Small Resolution Proofs for QBF using Dependency Treewidth

In spite of the close connection between the evaluation of quantified Boolean formulas (QBF) and propositional satisfiability (SAT), tools and techniques which exploit structural properties of SAT instances are known to fail for QBF. This is especially true for the structural parameter treewidth, which has allowed the design of successful algorithms for SAT but cannot be straightforwardly applied to QBF since it does not take into account the interdependencies between quantified variables. In this work we introduce and develop dependency treewidth, a new structural parameter based on treewidth which allows the efficient solution of QBF instances. Dependency treewidth pushes the frontiers of tractability for QBF by overcoming the limitations of previously introduced variants of treewidth for QBF. We augment our results by developing algorithms for computing the decompositions that are required to use the parameter.

[1]  Reinhard Diestel,et al.  Graph Minors I: A Short Proof of the Path-width Theorem , 1995, Combinatorics, Probability and Computing.

[2]  Klaus Truemper,et al.  An Effective QBF Solver for Planning Problems , 2004, MSV/AMCS.

[3]  Stefan Szeider,et al.  Quantifier Reordering for QBF , 2015, Journal of Automated Reasoning.

[4]  Thomas Wilke,et al.  Automata logics, and infinite games: a guide to current research , 2002 .

[5]  Hans L. Bodlaender A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC '93.

[6]  Isolde Adler,et al.  Tree-width for first order formulae , 2012 .

[7]  Ton Kloks Treewidth, Computations and Approximations , 1994, Lecture Notes in Computer Science.

[8]  Hans Kleine Büning,et al.  Theory of Quantified Boolean Formulas , 2021, Handbook of Satisfiability.

[9]  Allen Van Gelder Variable Independence and Resolution Paths for Quantified Boolean Formulas , 2011, CP.

[10]  Stefan Woltran,et al.  Solving Advanced Reasoning Tasks Using Quantified Boolean Formulas , 2000, AAAI/IAAI.

[11]  Stefan Szeider,et al.  Computing Resolution-Path Dependencies in Linear Time , , 2012, SAT.

[12]  Stefan Szeider,et al.  Soundness of Q-resolution with dependency schemes , 2016, Theor. Comput. Sci..

[13]  Hubie Chen,et al.  Decomposing Quantified Conjunctive (or Disjunctive) Formulas , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.

[14]  Stefan Szeider,et al.  On Fixed-Parameter Tractable Parameterizations of SAT , 2003, SAT.

[15]  Stefan Felsner,et al.  Recognition Algorithms for Orders of Small Width and Graphs of Small Dilworth Number , 2003, Order.

[16]  Armin Biere,et al.  Integrating Dependency Schemes in Search-Based QBF Solvers , 2010, SAT.

[17]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[18]  Bart Selman,et al.  QBF Modeling: Exploiting Player Symmetry for Simplicity and Efficiency , 2006, SAT.

[19]  Jussi Rintanen,et al.  Constructing Conditional Plans by a Theorem-Prover , 1999, J. Artif. Intell. Res..

[20]  Robert Ganian,et al.  Using Decomposition-Parameters for QBF: Mind the Prefix! , 2016, AAAI.

[21]  Hans K. Buning,et al.  Propositional Logic: Deduction and Algorithms , 1999 .

[22]  Albert Atserias,et al.  Bounded-width QBF is PSPACE-complete , 2014, J. Comput. Syst. Sci..

[23]  Marko Samer,et al.  Backdoor Sets of Quantified Boolean Formulas , 2008, Journal of Automated Reasoning.

[24]  Stefan Szeider,et al.  Variable Dependencies and Q-Resolution , 2014, SAT.

[25]  Luca Pulina,et al.  A Structural Approach to Reasoning with Quantified Boolean Formulas , 2009, IJCAI.

[26]  Luca Pulina,et al.  An Empirical Study of QBF Encodings: from Treewidth Estimation to Useful Preprocessing , 2010, Fundam. Informaticae.

[27]  Daniel A. Spielman,et al.  An Infinite Antichain of Permutations , 2000, Electron. J. Comb..

[28]  Michael R. Fellows,et al.  Fundamentals of Parameterized Complexity , 2013 .