Sampling strategies to assess microbial diversity of Antarctic cryptoendolithic communities

[1]  Meike J. Wittmann,et al.  Mathematical Ecology , 2006 .

[2]  J. Stajich,et al.  Altitude and fungal diversity influence the structure of Antarctic cryptoendolithic Bacteria communities. , 2019, Environmental microbiology reports.

[3]  J. Stajich,et al.  Antarctic Cryptoendolithic Fungal Communities Are Highly Adapted and Dominated by Lecanoromycetes and Dothideomycetes , 2018, Front. Microbiol..

[4]  Erin K. Grey,et al.  Effects of sampling effort on biodiversity patterns estimated from environmental DNA metabarcoding surveys , 2018, Scientific Reports.

[5]  J. Stajich,et al.  Sun Exposure Shapes Functional Grouping of Fungi in Cryptoendolithic Antarctic Communities , 2018, Life.

[6]  Jonathan M Palmer,et al.  Non-biological synthetic spike-in controls and the AMPtk software pipeline improve mycobiome data , 2018, PeerJ.

[7]  L. Selbmann,et al.  Effect of environmental parameters on biodiversity of the fungal component in lithic Antarctic communities , 2017, Extremophiles.

[8]  S. Cary,et al.  Endolithic microbial diversity in sandstone and granite from the McMurdo Dry Valleys, Antarctica , 2017, Polar Biology.

[9]  Jizhong Zhou,et al.  Taxonomic and Functional Diversity of Soil and Hypolithic Microbial Communities in Miers Valley, McMurdo Dry Valleys, Antarctica , 2016, Front. Microbiol..

[10]  Ben Nichols,et al.  Distributed under Creative Commons Cc-by 4.0 Vsearch: a Versatile Open Source Tool for Metagenomics , 2022 .

[11]  S. Cary,et al.  Endolithic microbial diversity in sandstone and granite from the McMurdo Dry Valleys, Antarctica , 2016, Polar Biology.

[12]  Robert C. Edgar,et al.  Error filtering, pair assembly and error correction for next-generation sequencing reads , 2015, Bioinform..

[13]  P. Baldrian,et al.  Composition of fungal and bacterial communities in forest litter and soil is largely determined by dominant trees , 2015 .

[14]  J. G. Burleigh,et al.  Synthesis of phylogeny and taxonomy into a comprehensive tree of life , 2014, Proceedings of the National Academy of Sciences.

[15]  J. Belnap,et al.  Disturbance to desert soil ecosystems contributes to dust-mediated impacts at regional scales , 2014, Biodiversity and Conservation.

[16]  S. Pointing,et al.  Diverse cryptic refuges for life during glaciation , 2014, Proceedings of the National Academy of Sciences.

[17]  Kabir G. Peay,et al.  Sequence Depth, Not PCR Replication, Improves Ecological Inference from Next Generation DNA Sequencing , 2014, PloS one.

[18]  Marti J. Anderson,et al.  PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? , 2013 .

[19]  P. Rettberg,et al.  The BOSS and BIOMEX space experiments on the EXPOSE-R2 mission: endurance of the desert cyanobacterium Chroococcidiopsis under simulated space vacuum, Martian atmosphere, UVC radiation and temperature extremes. , 2013 .

[20]  Kessy Abarenkov,et al.  Fungal community analysis by high-throughput sequencing of amplified markers – a user's guide , 2013, The New phytologist.

[21]  C. McKay,et al.  Continuous Nanoclimate Data (1985-1988) from the Ross Desert (McMurdo Dry Valleys) Cryptoendolithic Microbial Ecosystem , 2013 .

[22]  K. I. Ugland,et al.  Changes in the root‐associated fungal communities along a primary succession gradient analysed by 454 pyrosequencing , 2012, Molecular ecology.

[23]  William A. Walters,et al.  Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms , 2012, The ISME Journal.

[24]  Robert K. Colwell,et al.  Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages , 2012 .

[25]  A. Young,et al.  The influence of sampling strategies and spatial variation on the detected soil bacterial communities under three different land-use types. , 2011, FEMS microbiology ecology.

[26]  Thomas Bell,et al.  The bacterial biogeography of British soils. , 2011, Environmental microbiology.

[27]  T. Bruns,et al.  Quantifying microbial communities with 454 pyrosequencing: does read abundance count? , 2010, Molecular ecology.

[28]  M. Strickland,et al.  Considering fungal:bacterial dominance in soils – Methods, controls, and ecosystem implications , 2010 .

[29]  R. Knight,et al.  Soil bacterial and fungal communities across a pH gradient in an arable soil , 2010, The ISME Journal.

[30]  William A. Walters,et al.  QIIME allows analysis of high-throughput community sequencing data , 2010, Nature Methods.

[31]  J. Vivanco,et al.  Negative Effects of Sample Pooling on PCR-Based Estimates of Soil Microbial Richness and Community Structure , 2010, Applied and Environmental Microbiology.

[32]  S. Langenheder,et al.  Environmental and spatial characterisation of bacterial community composition in soil to inform sampling strategies , 2009 .

[33]  F. Martin,et al.  454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. , 2009, The New phytologist.

[34]  K. Jones,et al.  Massively parallel 454 sequencing indicates hyperdiverse fungal communities in temperate Quercus macrocarpa phyllosphere. , 2009, The New phytologist.

[35]  Anne Chao,et al.  Sufficient sampling for asymptotic minimum species richness estimators. , 2009, Ecology.

[36]  R. Bachofen,et al.  Molecular Characterization of an Endolithic Microbial Community in Dolomite Rock in the Central Alps (Switzerland) , 2009, Microbial Ecology.

[37]  R. B. Jackson,et al.  Assessment of Soil Microbial Community Structure by Use of Taxon-Specific Quantitative PCR Assays , 2005, Applied and Environmental Microbiology.

[38]  Norman R. Pace,et al.  Microbial Diversity of Cryptoendolithic Communities from the McMurdo Dry Valleys, Antarctica , 2003, Applied and Environmental Microbiology.

[39]  Christopher P. McKay,et al.  Valley floor climate observations from the McMurdo dry valleys, Antarctica, 1986–2000 , 2002 .

[40]  Nicholas J. Gotelli,et al.  Swap and fill algorithms in null model analysis: rethinking the knight's tour , 2001, Oecologia.

[41]  Robert K. Colwell,et al.  Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness , 2001 .

[42]  L Raeymaekers,et al.  Basic principles of quantitative PCR , 2000, Molecular biotechnology.

[43]  H. Edwards,et al.  Proximal Analysis of Regolith Habitats and Protective Biomolecules in Situ by Laser Raman Spectroscopy: Overview of Terrestrial Antarctic Habitats and Mars Analogs , 2000 .

[44]  G. Halffter,et al.  Assessing the completeness of bat biodiversity inventories using species accumulation curves , 2000 .

[45]  Robert K. Colwell,et al.  Estimating terrestrial biodiversity through extrapolation. , 1994, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[46]  J. Cullen,et al.  Ultraviolet radiation, ozone depletion, and marine photosynthesis , 1994, Photosynthesis Research.

[47]  K. Baker,et al.  Ozone depletion: ultraviolet radiation and phytoplankton biology in antarctic waters. , 1992, Science.

[48]  M. Palmer,et al.  The Estimation of Species Richness by Extrapolation , 1990 .

[49]  E. Friedmann,et al.  Endolithic Microorganisms in the Antarctic Cold Desert , 1982, Science.

[50]  E. Friedmann,et al.  Endolithic Blue-Green Algae in the Dry Valleys: Primary Producers in the Antarctic Desert Ecosystem , 1976, Science.

[51]  R. E. Cameron,et al.  Microbiology of the dry valleys of antarctica. , 1972, Science.

[52]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .

[53]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[54]  Robert C. Edgar,et al.  Search and clustering orders of magnitude faster than BLAST , 2010 .

[55]  N. Mercado-Silva,et al.  An overview of sampling issues in species diversity and abundance surveys , 2010 .

[56]  Arturo H. Ariño,et al.  Optimal Sampling for Complexity in Soil Ecosystems , 2008 .

[57]  L. Selbmann,et al.  Antarctic microfungi as models for exobiology , 2004 .

[58]  Iconography of Antarctic and Sub-Antarctic Benthic Marine Algae. Antarctic Meteorology and Climatology: Studies based on Automatic Weather Stations , 2004 .

[59]  O Hammer-Muntz,et al.  PAST: paleontological statistics software package for education and data analysis version 2.09 , 2001 .

[60]  Ø. Hammer,et al.  PAST: PALEONTOLOGICAL STATISTICAL SOFTWARE PACKAGE FOR EDUCATION AND DATA ANALYSIS , 2001 .

[61]  Mieczysław Górny,et al.  Methods in soil zoology , 1992 .

[62]  D. Wynn-Williams Ecological Aspects of Antarctic Microbiology , 1990 .

[63]  E. Friedmann,et al.  Cryptoendolithic lichen and cyanobacterial communities of the Ross Desert, Antarctica. , 1988, Polarforschung.

[64]  E. H. Simpson Measurement of Diversity , 1949, Nature.