Path integral Monte Carlo studies of the behavior of excess electrons in simple fluids

The behavior of an excess electron in helium (at T=309 K) and xenon (at T=309 K and T=248 K) is studied over a range of fluid densities (ρ*=ρσ3=0.1–0.9). A path integral Monte Carlo technique is used to model the ‘‘quantum’’ electron which interacts through pseudopotentials with the ‘‘classical’’ solvent particles. In helium, the electron becomes confined in a cavity in the solvent and behaves like a particle in a spherical box. We observe contrasting behavior in the more polarizable xenon solvent where the electron exists in a ‘‘quasifree’’ state. A variety of equilibrium properties of the electron and the solvent are presented to characterize the structure of the different systems. The anomolous density dependence of the experimental electron mobility along the coexistence curve in xenon can be understood qualitatively in terms of the equilibrium structures we observe at the different solvent densities.

[1]  Aneesur Rahman,et al.  Hydrated electron revisited via the feynman path integral route , 1986 .

[2]  Klein,et al.  Computer simulation of a quantum particle in a quenched disordered system: Direct observation of Lifshitz traps. , 1985, Physical review. B, Condensed matter.

[3]  Bruce J. Berne,et al.  On the Simulation of Quantum Systems: Path Integral Methods , 1986 .

[4]  Stuart A. Rice,et al.  Low-Energy Elastic Scattering of Electrons and Positrons from Helium Atoms , 1965 .

[5]  Peter G. Wolynes,et al.  Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids , 1981 .

[6]  M. Parrinello,et al.  Study of an F center in molten KCl , 1984 .

[7]  P. Siska One‐electron model potential calculations of van der Waals forces. I. He* (2 1S, 2 3S) + Ne, Ar, Kr, Xe , 1979 .

[8]  D. Ceperley,et al.  Simulation of quantum many-body systems by path-integral methods , 1984 .

[9]  A. Bartels,et al.  Density dependence of electron drift velocities in helium and hydrogen at 77.6 K , 1975 .

[10]  J. Hammersley,et al.  Monte Carlo Methods , 1965 .

[11]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[12]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .

[13]  Frank H. Stillinger,et al.  Polarization model for water and its ionic dissociation products , 1978 .

[14]  W. Kauppila,et al.  Measurements of total scattering cross sections for low-energy positrons and electrons colliding with krypton and xenon , 1980 .

[15]  K. Yoshino,et al.  Effect of molecular solutes on the electron drift velocity in liquid Ar, Kr, and Xe , 1976 .

[16]  Pollock,et al.  Path-integral computation of the low-temperature properties of liquid 4He. , 1986, Physical review letters.

[17]  D. Chandler,et al.  Excess electrons in simple fluids. II. Numerical results for the hard sphere solvent , 1984 .

[18]  Bruce J. Berne,et al.  Time correlation functions in quantum systems , 1984 .

[19]  R. A. Kuharski,et al.  Quantum simulations of aqueous systems , 1986 .

[20]  N. F. Sir Mott,et al.  The theory of atomic collisions , 1933 .

[21]  R. Coalson On the computation of two surface properties by coordinate‐space propagator techniques , 1985 .

[22]  R. Coalson On the connection between Fourier coefficient and Discretized Cartesian path integration , 1986 .

[23]  R. Gáspár,et al.  Über eine Approximation des Hartree-Fockschen Potentials Durch eine Universelle Potentialfunktion , 1954 .

[24]  T. R. Kirkpatrick,et al.  Electron mobility in gases at low temperatures: The quantum mechanical Lorentz gas, I , 1983 .

[25]  L. Kevan Electron spin echo studies of solvation structure , 1981 .

[26]  Dieter Forster,et al.  Hydrodynamic fluctuations, broken symmetry, and correlation functions , 1975 .

[27]  Peter Politzer,et al.  Chemical Applications of Atomic and Molecular Electrostatic Potentials: "Reactivity, Structure, Scattering, And Energetics Of Organic, Inorganic, And Biological Systems" , 2013 .

[28]  D. J. Adams,et al.  Calculating the high-temperature vapour line by Monte Carlo , 1976 .

[29]  J. C. Slater Statistical Exchange-Correlation in the Self-Consistent Field , 1972 .

[30]  Harold A. Scheraga,et al.  Preferential sampling near solutes in monte carlo calculations on dilute solutions , 1977 .

[31]  F. J. Heer,et al.  Total cross sections for electron scattering by Ne, Ar, Kr and Xe , 1979 .

[32]  B. Berne,et al.  Path integral methods for simulating electronic spectra , 1985 .

[33]  Klein,et al.  Staging: A sampling technique for the Monte Carlo evaluation of path integrals. , 1985, Physical review. B, Condensed matter.

[34]  Morrell H. Cohen,et al.  Deformation-potential theory for the mobility of excess electrons in liquid argon , 1979 .

[35]  R. Impey,et al.  Study of electron solvation in polar solvents using path integral calculations , 1986 .

[36]  Mihaly Mezei,et al.  Convergence acceleration in Monte Carlo computer simulation on water and aqueous solutions , 1983 .

[37]  Hall,et al.  Behavior of an electron in helium gas. , 1985, Physical review. B, Condensed matter.

[38]  G. Kenney-Wallace,et al.  Picosecond spectroscopy and solvation clusters. The dynamics of localizing electrons in polar fluids , 1982 .

[39]  H. L. Cox,et al.  Elastic Electron Scattering Amplitudes for Neutral Atoms Calculated Using the Partial Wave Method at 10, 40, 70, and 100 kV for Z = 1 to Z = 54 , 1967 .

[40]  J. Doll,et al.  A Monte Carlo method for quantum Boltzmann statistical mechanics , 1984 .

[41]  B. Berne,et al.  On the calculation of time correlation functions in quantum systems: Path integral techniquesa) , 1983 .

[42]  J. Jortner,et al.  Effects of phase density on ionization processes and electron localization in fluids , 1977 .

[43]  M. Klein,et al.  Simulation of an excess electron in a hard sphere fluid , 1985 .

[44]  Lothar Meyer,et al.  Electron Drift Velocities in Liquefied Argon and Krypton at Low Electric Field Strengths , 1966 .

[45]  S. Rice,et al.  Zero-Field Mobility of an Excess Electron in Fluid Argon , 1971 .

[46]  J. Valleau,et al.  A Monte Carlo study of the two-dimensional Lennard-Jones system , 1974 .

[47]  M. Rao,et al.  On the force bias Monte Carlo simulation of water: methodology, optimization and comparison with molecular dynamics , 1979 .

[48]  Harry F. Jordan,et al.  PATH INTEGRAL CALCULATION OF THE TWOPARTICLE SLATER SUM FOR HE4 , 1965 .

[49]  D. Chandler,et al.  Excess electrons in simple fluids. I. General equilibrium theory for classical hard sphere solvents , 1984 .

[50]  R. Impey,et al.  Study of electron solvation in liquid ammonia using quantum path integral Monte Carlo calculations , 1985 .

[51]  M. Floriano,et al.  Electron transport in liquids: Effect of unbalancing the sphere‐like methane molecules by deuteration, and comparison with argon, krypton, and xenon , 1986 .

[52]  Sam S.‐S. Huang,et al.  Electron mobilities in gaseous, critical, and liquid xenon: Density, electric field, and temperature effects: Quasilocalization , 1978 .

[53]  T. M. Sanders,et al.  MOBILITY OF ELECTRONS IN LOW-TEMPERATURE HELIUM GAS. , 1967 .

[54]  K. Schwarz Anomalous Electron Mobilities in Dense Helium Gas , 1978 .

[55]  David A. Dixon,et al.  Polarization and absorption effects in electron-helium scattering at 30--400 eV , 1982 .