Local reconstruction for sampling in shift-invariant spaces

The local reconstruction from samples is one of most desirable properties for many applications in signal processing, but it has not been given as much attention. In this paper, we will consider the local reconstruction problem for signals in a shift-invariant space. In particular, we consider finding sampling sets X such that signals in a shift-invariant space can be locally reconstructed from their samples on X. For a locally finite-dimensional shift-invariant space V we show that signals in V can be locally reconstructed from its samples on any sampling set with sufficiently large density. For a shift-invariant space V(ϕ1, ..., ϕN) generated by finitely many compactly supported functions ϕ1, ..., ϕN, we characterize all periodic nonuniform sampling sets X such that signals in that shift-invariant space V(ϕ1, ..., ϕN) can be locally reconstructed from the samples taken from X. For a refinable shift-invariant space V(ϕ) generated by a compactly supported refinable function ϕ, we prove that for almost all $(x_0, x_1)\in [0,1]^2$, any signal in V(ϕ) can be locally reconstructed from its samples from $\{x_0, x_1\}+{\mathbb Z}$ with oversampling rate 2. The proofs of our results on the local sampling and reconstruction in the refinable shift-invariant space V(ϕ) depend heavily on the linear independent shifts of a refinable function on measurable sets with positive Lebesgue measure and the almost ripplet property for a refinable function, which are new and interesting by themselves.

[1]  R. DeVore,et al.  The Structure of Finitely Generated Shift-Invariant Spaces in , 1992 .

[2]  H. Triebel Theory Of Function Spaces , 1983 .

[3]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.

[4]  Wenchang Sun,et al.  Characterization of local sampling sequences for spline subspaces , 2009, Adv. Comput. Math..

[5]  J. M. Peña Refinable functions with general dilation and a stable test for generalized Routh-Hurwitz conditions , 2007 .

[6]  Martin Vetterli,et al.  Sampling and reconstruction of signals with finite rate of innovation in the presence of noise , 2005, IEEE Transactions on Signal Processing.

[7]  Akram Aldroubi,et al.  Locally finite dimensional shift-invariant spaces in ^{} , 2002 .

[8]  A. Aldroubi,et al.  p-Frames and Shift Invariant Subspaces of Lp , 2001 .

[9]  Qiyu Sun,et al.  Affine similarity of refinable functions , 1999 .

[10]  C. Micchelli,et al.  Stationary Subdivision , 1991 .

[11]  P. L. Butzer,et al.  Reconstruction of bounded signals from pseudo-periodic, irregularly spaced samples , 1989 .

[12]  Jared Tanner,et al.  Fast Reconstruction Methods for Bandlimited Functions from Periodic Nonuniform Sampling , 2006, SIAM J. Numer. Anal..

[13]  Y. Meyer Ondelettes sur l'intervalle. , 1991 .

[14]  S. Smale,et al.  Shannon sampling and function reconstruction from point values , 2004 .

[15]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[16]  Thierry Blu,et al.  Sampling signals with finite rate of innovation , 2002, IEEE Trans. Signal Process..

[17]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  J. Lakey,et al.  Periodic Nonuniform Sampling in Shift-Invariant Spaces , 2006 .

[19]  A. Aldroubi,et al.  Nonuniform Average Sampling and Reconstruction in Multiply Generated Shift-Invariant Spaces , 2004 .

[20]  Shuichi Itoh,et al.  On sampling in shift invariant spaces , 2002, IEEE Trans. Inf. Theory.

[21]  A. Ron A necessary and sufficient condition for the linear independence of the integer translates of a compactly supported distribution , 1989 .

[22]  Steven A. Orszag,et al.  CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .

[23]  Gilbert G. Walter,et al.  A sampling theorem for wavelet subspaces , 1992, IEEE Trans. Inf. Theory.

[24]  Qiyu Sun,et al.  Reconstructing Signals with Finite Rate of Innovation from Noisy Samples , 2009 .

[25]  Akram Aldroubi,et al.  On stability of sampling-reconstruction models , 2007, Adv. Comput. Math..

[26]  P. Laguna,et al.  Signal Processing , 2002, Yearbook of Medical Informatics.

[27]  M. Unser Sampling-50 years after Shannon , 2000, Proceedings of the IEEE.

[28]  Bin Han,et al.  On simple oversampled A/D conversion in shift-invariant spaces , 2005, IEEE Transactions on Information Theory.

[29]  Akram Aldroubi,et al.  Nonuniform Sampling and Reconstruction in Shift-Invariant Spaces , 2001, SIAM Rev..

[30]  Qiyu Sun,et al.  Nonuniform Average Sampling and Reconstruction of Signals with Finite Rate of Innovation , 2006, SIAM J. Math. Anal..

[31]  Tim N. T. Goodman,et al.  Total positivity and refinable functions with general dilation , 2004 .

[32]  P. P. Vaidyanathan,et al.  Generalized sampling theorems in multiresolution subspaces , 1997, IEEE Trans. Signal Process..

[33]  A. Aldroubi,et al.  Locally finite dimensional shift-invariant spaces in Rd , 2002 .

[34]  I. Daubechies Ten Lectures on Wavelets , 1992 .

[35]  Michael Unser,et al.  A general sampling theory for nonideal acquisition devices , 1994, IEEE Trans. Signal Process..

[36]  Augustus J. E. M. Janssen,et al.  The Zak transform and sampling theorems for wavelet subspaces , 1993, IEEE Trans. Signal Process..

[37]  Yonina C. Eldar,et al.  Nonideal sampling and interpolation from noisy observations in shift-invariant spaces , 2006, IEEE Transactions on Signal Processing.

[38]  K. Gröchenig,et al.  Beurling-Landau-type theorems for non-uniform sampling in shift invariant spline spaces , 2000 .

[39]  Ding-Xuan Zhou,et al.  Local linear independence of refinable vectors of functions , 2000, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[40]  P. Lemarié-Rieusset Fonctions à support compact dans les analyses multi-résoIutions , 1991 .

[41]  J. A. Hogan,et al.  Sampling and oversampling in Shift-Invariant and Multiresolution Spaces I: Validation of Sampling Schemes , 2005, Int. J. Wavelets Multiresolution Inf. Process..

[42]  Tim N. T. Goodman,et al.  On refinement equations determined by Po´lya frequency sequences , 1992 .

[43]  A. Aldroubi,et al.  Convolution, Average Sampling, and a Calderon Resolution of the Identity for Shift-Invariant Spaces , 2005 .

[44]  P. Vaidyanathan Generalizations of the sampling theorem: Seven decades after Nyquist , 2001 .

[45]  Bin Han,et al.  Maximal gap of a sampling set for the exact iterative reconstruction algorithm in shift invariant spaces , 2004, IEEE Signal Processing Letters.

[46]  Bin Han,et al.  Estimate of aliasing error for non-smooth signals prefiltered by quasi-projections into shift-invariant spaces , 2005, IEEE Transactions on Signal Processing.

[47]  Karlheinz Gröchenig,et al.  Fast Local Reconstruction Methods for Nonuniform Sampling in Shift-Invariant Spaces , 2002, SIAM J. Matrix Anal. Appl..

[48]  Qiyu Sun,et al.  Frames in spaces with finite rate of innovation , 2008, Adv. Comput. Math..

[49]  Marcin Bownik The Structure of Shift-Invariant Subspaces of L2(Rn)☆ , 2000 .

[50]  T. Strohmer,et al.  Efficient numerical methods in non-uniform sampling theory , 1995 .

[51]  C. Micchelli,et al.  On linear independence for integer translates of a finite number of functions , 1993, Proceedings of the Edinburgh Mathematical Society.

[52]  Qiyu Sun Two-Scale Difference Equation: Local And Global Linear Independence , 1991 .

[53]  Zuowei Shen,et al.  An algorithm for matrix extension and wavelet construction , 1996, Math. Comput..