Local reconstruction for sampling in shift-invariant spaces
暂无分享,去创建一个
[1] R. DeVore,et al. The Structure of Finitely Generated Shift-Invariant Spaces in , 1992 .
[2] H. Triebel. Theory Of Function Spaces , 1983 .
[3] George G. Lorentz,et al. Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.
[4] Wenchang Sun,et al. Characterization of local sampling sequences for spline subspaces , 2009, Adv. Comput. Math..
[5] J. M. Peña. Refinable functions with general dilation and a stable test for generalized Routh-Hurwitz conditions , 2007 .
[6] Martin Vetterli,et al. Sampling and reconstruction of signals with finite rate of innovation in the presence of noise , 2005, IEEE Transactions on Signal Processing.
[7] Akram Aldroubi,et al. Locally finite dimensional shift-invariant spaces in ^{} , 2002 .
[8] A. Aldroubi,et al. p-Frames and Shift Invariant Subspaces of Lp , 2001 .
[9] Qiyu Sun,et al. Affine similarity of refinable functions , 1999 .
[10] C. Micchelli,et al. Stationary Subdivision , 1991 .
[11] P. L. Butzer,et al. Reconstruction of bounded signals from pseudo-periodic, irregularly spaced samples , 1989 .
[12] Jared Tanner,et al. Fast Reconstruction Methods for Bandlimited Functions from Periodic Nonuniform Sampling , 2006, SIAM J. Numer. Anal..
[13] Y. Meyer. Ondelettes sur l'intervalle. , 1991 .
[14] S. Smale,et al. Shannon sampling and function reconstruction from point values , 2004 .
[15] J. Cooper. SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .
[16] Thierry Blu,et al. Sampling signals with finite rate of innovation , 2002, IEEE Trans. Signal Process..
[17] Stéphane Mallat,et al. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..
[18] J. Lakey,et al. Periodic Nonuniform Sampling in Shift-Invariant Spaces , 2006 .
[19] A. Aldroubi,et al. Nonuniform Average Sampling and Reconstruction in Multiply Generated Shift-Invariant Spaces , 2004 .
[20] Shuichi Itoh,et al. On sampling in shift invariant spaces , 2002, IEEE Trans. Inf. Theory.
[21] A. Ron. A necessary and sufficient condition for the linear independence of the integer translates of a compactly supported distribution , 1989 .
[22] Steven A. Orszag,et al. CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS , 1978 .
[23] Gilbert G. Walter,et al. A sampling theorem for wavelet subspaces , 1992, IEEE Trans. Inf. Theory.
[24] Qiyu Sun,et al. Reconstructing Signals with Finite Rate of Innovation from Noisy Samples , 2009 .
[25] Akram Aldroubi,et al. On stability of sampling-reconstruction models , 2007, Adv. Comput. Math..
[26] P. Laguna,et al. Signal Processing , 2002, Yearbook of Medical Informatics.
[27] M. Unser. Sampling-50 years after Shannon , 2000, Proceedings of the IEEE.
[28] Bin Han,et al. On simple oversampled A/D conversion in shift-invariant spaces , 2005, IEEE Transactions on Information Theory.
[29] Akram Aldroubi,et al. Nonuniform Sampling and Reconstruction in Shift-Invariant Spaces , 2001, SIAM Rev..
[30] Qiyu Sun,et al. Nonuniform Average Sampling and Reconstruction of Signals with Finite Rate of Innovation , 2006, SIAM J. Math. Anal..
[31] Tim N. T. Goodman,et al. Total positivity and refinable functions with general dilation , 2004 .
[32] P. P. Vaidyanathan,et al. Generalized sampling theorems in multiresolution subspaces , 1997, IEEE Trans. Signal Process..
[33] A. Aldroubi,et al. Locally finite dimensional shift-invariant spaces in Rd , 2002 .
[34] I. Daubechies. Ten Lectures on Wavelets , 1992 .
[35] Michael Unser,et al. A general sampling theory for nonideal acquisition devices , 1994, IEEE Trans. Signal Process..
[36] Augustus J. E. M. Janssen,et al. The Zak transform and sampling theorems for wavelet subspaces , 1993, IEEE Trans. Signal Process..
[37] Yonina C. Eldar,et al. Nonideal sampling and interpolation from noisy observations in shift-invariant spaces , 2006, IEEE Transactions on Signal Processing.
[38] K. Gröchenig,et al. Beurling-Landau-type theorems for non-uniform sampling in shift invariant spline spaces , 2000 .
[39] Ding-Xuan Zhou,et al. Local linear independence of refinable vectors of functions , 2000, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[40] P. Lemarié-Rieusset. Fonctions à support compact dans les analyses multi-résoIutions , 1991 .
[41] J. A. Hogan,et al. Sampling and oversampling in Shift-Invariant and Multiresolution Spaces I: Validation of Sampling Schemes , 2005, Int. J. Wavelets Multiresolution Inf. Process..
[42] Tim N. T. Goodman,et al. On refinement equations determined by Po´lya frequency sequences , 1992 .
[43] A. Aldroubi,et al. Convolution, Average Sampling, and a Calderon Resolution of the Identity for Shift-Invariant Spaces , 2005 .
[44] P. Vaidyanathan. Generalizations of the sampling theorem: Seven decades after Nyquist , 2001 .
[45] Bin Han,et al. Maximal gap of a sampling set for the exact iterative reconstruction algorithm in shift invariant spaces , 2004, IEEE Signal Processing Letters.
[46] Bin Han,et al. Estimate of aliasing error for non-smooth signals prefiltered by quasi-projections into shift-invariant spaces , 2005, IEEE Transactions on Signal Processing.
[47] Karlheinz Gröchenig,et al. Fast Local Reconstruction Methods for Nonuniform Sampling in Shift-Invariant Spaces , 2002, SIAM J. Matrix Anal. Appl..
[48] Qiyu Sun,et al. Frames in spaces with finite rate of innovation , 2008, Adv. Comput. Math..
[49] Marcin Bownik. The Structure of Shift-Invariant Subspaces of L2(Rn)☆ , 2000 .
[50] T. Strohmer,et al. Efficient numerical methods in non-uniform sampling theory , 1995 .
[51] C. Micchelli,et al. On linear independence for integer translates of a finite number of functions , 1993, Proceedings of the Edinburgh Mathematical Society.
[52] Qiyu Sun. Two-Scale Difference Equation: Local And Global Linear Independence , 1991 .
[53] Zuowei Shen,et al. An algorithm for matrix extension and wavelet construction , 1996, Math. Comput..