The Robinson-Schensted and Schützenberger algorithms, an elementary approach
暂无分享,去创建一个
[1] Glânffrwd P. Thomas,et al. On a construction of schützenberger , 1977, Discret. Math..
[2] Bruce E. Sagan,et al. Robinson-schensted algorithms for skew tableaux , 1990, J. Comb. Theory A.
[3] Donald E. Knuth,et al. PERMUTATIONS, MATRICES, AND GENERALIZED YOUNG TABLEAUX , 1970 .
[4] G. Viennot,et al. Une forme geometrique de la correspondance de Robinson-Schensted , 1977 .
[5] Dan Barbasch,et al. Primitive ideals and orbital integrals in complex classical groups , 1982 .
[6] R. Steinberg. An occurrence of the Robinson-Schensted correspondence , 1988 .
[7] John R. Stembridge,et al. Rational tableaux and the tensor algebra of gln , 1987, J. Comb. Theory, Ser. A.
[8] D. E. Littlewood,et al. Group Characters and Algebra , 1934 .
[9] C. Schensted. Longest Increasing and Decreasing Subsequences , 1961, Canadian Journal of Mathematics.
[10] Bruce E. Sagan,et al. The Ubiquitous Young Tableau , 1988 .
[11] Marcel Paul Schützenberger,et al. Promotion des morphismes d'ensembles ordonnes , 1972, Discret. Math..
[12] Richard Brauer,et al. Theory of group characters , 1979 .
[13] A Robinson-Schensted-type algorithm for SO(2n, C) , 1991 .
[14] Sergey Fomin,et al. A Littlewood-Richardson Miscellany , 1993, Eur. J. Comb..
[15] Soichi Okada. Wreath products by the symmetric groups and product posets of Young's lattices , 1990, J. Comb. Theory, Ser. A.
[16] A. F. Sidorenko,et al. The maximal number of edges in a homogeneous hypergraph containing no prohibited subgraphs , 1987 .
[17] Sheila Sundaram,et al. Orthogonal tableaux and an insertion algorithm for SO(2n + 1) , 1990, J. Comb. Theory, Ser. A.
[18] A Classification of the Nilpotent Triangular Matrices , 1985 .
[19] Sergey Fomin,et al. Duality of Graded Graphs , 1994 .
[20] Compositio Mathematica,et al. On the classification of primitive ideals for complex classical Lie algebras, II , 2018 .
[21] Curtis Greene. Some Partitions Associated with a Partially Ordered Set , 1976, J. Comb. Theory, Ser. A.
[22] A Schensted Algorithm Which Models Tensor Representations of the Orthogonal Group , 1990, Canadian Journal of Mathematics.
[23] Curtis Greene,et al. An Extension of Schensted's Theorem , 1974 .
[24] Marcel Paul Schützenberger,et al. La correspondance de Robinson , 1977 .
[25] A. Zelevinsky,et al. A generalization of the Littlewood-Richardson rule and the Robinson-Schensted-Knuth correspondence , 1981 .
[26] Bruce E. Sagan. An Analog of Schensted's Algorithm for Shifted Young Tableaux , 1979, J. Comb. Theory, Ser. A.
[27] Mark D. Haiman. On mixed insertion, symmetry, and shifted young tableaux , 1989, J. Comb. Theory, Ser. A.
[28] Marcel P. Schützenberger. Quelques remarques sur une Construction de Schensted. , 1963 .
[29] Itaru Terada. A Robinson-Schensted-Type Correspondence for a Dual Pair on Spinors , 1993, J. Comb. Theory, Ser. A.
[30] Allan Berele,et al. A schensted-type correspondence for the symplectic group , 1986, J. Comb. Theory, Ser. A.
[31] Frank Sottile,et al. Tableau Switching: Algorithms and Applications , 1996, J. Comb. Theory, Ser. A.
[32] Georgia Benkart,et al. Tableaux and insertion schemes for spinor representations of the orthogonal Lie algebraso(2r + 1, C) , 1991, J. Comb. Theory, Ser. A.
[33] Zoltán Füredi,et al. Union-free Hypergraphs and Probability Theory , 1984, Eur. J. Comb..
[34] Willard Miller,et al. The IMA volumes in mathematics and its applications , 1986 .
[35] Mark D. Haiman,et al. Dual equivalence with applications, including a conjecture of Proctor , 1992, Discret. Math..
[36] Sergey Fomin,et al. Schensted Algorithms for Dual Graded Graphs , 1995 .
[37] Dennis E. White,et al. A Schensted Algorithm for Rim Hook Tableaux , 1985, J. Comb. Theory, Ser. A.
[38] S. Fomin,et al. Generalized Robinson-Schensted-Knuth correspondence , 1988 .
[39] M. Duflo. Sur la classification des ideaux primitifs dans l'algebre enveloppante d'une algebre de Lie semi-simple , 1977 .
[40] Richard P. Stanley,et al. Some Aspects of Groups Acting on Finite Posets , 1982, J. Comb. Theory, Ser. A.
[41] Glânffrwd P Thomas. On Schensted's construction and the multiplication of schur functions , 1978 .
[42] Sergey Fomin,et al. Schur Operators and Knuth Correspondences , 1995, J. Comb. Theory, Ser. A.
[43] Tom Roby,et al. Applications and extensions of Fomin's generalization of the Robinson-Schensted correspondence to differential posets , 1991 .
[44] D. Kazhdan,et al. Representations of Coxeter groups and Hecke algebras , 1979 .
[45] van M.A.A. Leeuwen. The Robinson-Schensted and Schützenberger algorithms. Part I: New Combinatorial Proofs. , 1992 .
[46] Sheila Sundaram. On the combinatorics of representations of Sp(2n,C) , 1986 .
[47] Dennis E. White. Some Connections between the Littlewood-Richardson , 1981, J. Comb. Theory, Ser. A.
[48] M.A.A. vanLeeuwen. The Robinson-Schensted and Schützenberger algorithms. Part I: New Combinatorial Proofs. , 1992 .
[49] Marc A. A. van Leeuwen. Tableau algorithms defined naturally for pictures , 1996, Discret. Math..
[50] Itaru Tereda. A Robinson-Schensted-type correspondence for a dual pair on spinors , 1993 .