THE LICK AGN MONITORING PROJECT: THE MBH–σ* RELATION FOR REVERBERATION-MAPPED ACTIVE GALAXIES

To investigate the black hole mass versus stellar velocity dispersion (MBH–σ*) relation of active galaxies, we measured the velocity dispersions of a sample of local Seyfert 1 galaxies, for which we have recently determined black hole masses using reverberation mapping. For most objects, stellar velocity dispersions were measured from high signal-to-noise ratio optical spectra centered on the Ca ii triplet region (∼8500 Å), obtained at the Keck, Palomar, and Lick Observatories. For two objects, in which the Ca ii triplet region was contaminated by nuclear emission, the measurement was based on high-quality H-band spectra obtained with the OH-Suppressing Infrared Imaging Spectrograph at the Keck-II telescope. Combining our new measurements with data from the literature, we assemble a sample of 24 active galaxies with stellar velocity dispersions and reverberation-based black hole mass measurements in the range of black hole mass 106 < MBH/M☉ < 109. We use this sample to obtain reverberation-mapping constraints on the slope and intrinsic scatter of the MBH–σ* relation of active galaxies. Assuming a constant virial coefficient f for the reverberation-mapping black hole masses, we find a slope β = 3.55 ± 0.60 and the intrinsic scatter σint = 0.43 ± 0.08 dex in the relation log(MBH/M☉) = α + β log(σ*/200 km s−1), which are consistent with those found for quiescent galaxies. We derive an updated value of the virial coefficient f by finding the value which places the reverberation masses in best agreement with the MBH–σ* relation of quiescent galaxies; using the quiescent MBH–σ* relation determined by Gültekin et al., we find log f = 0.72+0.09−0.10 with an intrinsic scatter of 0.44 ± 0.07 dex. No strong correlations between f and parameters connected to the physics of accretion (such as the Eddington ratio or line-shape measurements) are found. The uncertainty of the virial coefficient remains one of the main sources of the uncertainty in black hole mass determinations using reverberation mapping, and therefore also in single-epoch spectroscopic estimates of black hole masses in active galaxies.

[1]  T. Treu,et al.  COSMIC EVOLUTION OF BLACK HOLES AND SPHEROIDS. IV. THE MBH–Lsph RELATION , 2009, 0911.4107.

[2]  J. Trump,et al.  ON THE COSMIC EVOLUTION OF THE SCALING RELATIONS BETWEEN BLACK HOLES AND THEIR HOST GALAXIES: BROAD-LINE ACTIVE GALACTIC NUCLEI IN THE zCOSMOS SURVEY , 2009, 0910.4970.

[3]  Astronomy,et al.  THE LICK AGN MONITORING PROJECT: PHOTOMETRIC LIGHT CURVES AND OPTICAL VARIABILITY CHARACTERISTICS , 2009, 0909.5455.

[4]  Takeo Minezaki,et al.  THE LICK AGN MONITORING PROJECT: BROAD-LINE REGION RADII AND BLACK HOLE MASSES FROM REVERBERATION MAPPING OF Hβ , 2009, The Astrophysical Journal.

[5]  J. Bird,et al.  A REVISED BROAD-LINE REGION RADIUS AND BLACK HOLE MASS FOR THE NARROW-LINE SEYFERT 1 NGC 4051 , 2009, 0904.0251.

[6]  Ralf Bender,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE M–σ AND M–L RELATIONS IN GALACTIC BULGES, AND DETERMINATIONS OF THEIR INTRINSIC SCATTER , 2008 .

[7]  B. Peterson,et al.  SYSTEMATIC UNCERTAINTIES IN BLACK HOLE MASSES DETERMINED FROM SINGLE-EPOCH SPECTRA , 2008, 0810.3234.

[8]  P. Martini,et al.  First Stellar Velocity Dispersion Measurement of a Luminous Quasar Host with Gemini North Laser Guide Star Adaptive Optics , 2008, 0806.3271.

[9]  T. Treu,et al.  Cosmic Evolution of Black Holes and Spheroids. III. The MBH-σ* Relation in the Last Six Billion Years , 2008, 0804.0235.

[10]  R. Maiolino,et al.  The Effect of Radiation Pressure on Virial Black Hole Mass Estimates and the Case of Narrow-Line Seyfert 1 Galaxies , 2008, 0802.2021.

[11]  T. Treu,et al.  Comparing and Calibrating Black Hole Mass Estimators for Distant Active Galactic Nuclei , 2007, 0710.1839.

[12]  D. Berk,et al.  THE BLACK HOLE–BULGE RELATIONSHIP IN LUMINOUS BROAD-LINE ACTIVE GALACTIC NUCLEI AND HOST GALAXIES , 2007, 0712.1630.

[13]  O. Shemmer,et al.  THE ASTROPHYSICAL JOURNAL,???:???–???, 200????????? Preprint typeset using L ATEX style emulateapj v. 12/14/05 BLACK-HOLE MASS AND GROWTH RATE AT HIGH REDSHIFT , 2007 .

[14]  S. Tremaine,et al.  Selection Bias in Observing the Cosmological Evolution of the M•-σ and M•-L Relationships , 2007, 0705.4103.

[15]  R. Davies,et al.  A method to remove residual OH emission from near-infrared spectra , 2007 .

[16]  B. Peterson,et al.  NGC 5548 in a Low-Luminosity State: Implications for the Broad-Line Region , 2007, astro-ph/0702644.

[17]  S. Veilleux,et al.  Host Dynamics and Origin of Palomar-Green QSOs , 2006, astro-ph/0610719.

[18]  B. Peterson,et al.  The Mass of the Black Hole in the Seyfert 1 Galaxy NGC 4593 from Reverberation Mapping , 2006, astro-ph/0608406.

[19]  B. Peterson,et al.  A Reverberation-based Mass for the Central Black Hole in NGC 4151 , 2006, astro-ph/0607085.

[20]  James Lyke,et al.  OSIRIS: a diffraction limited integral field spectrograph for Keck , 2006, SPIE Astronomical Telescopes + Instrumentation.

[21]  T. Treu,et al.  Cosmic Evolution of Black Holes and Spheroids. I. The MBH-σ Relation at z = 0.36 , 2006, astro-ph/0603648.

[22]  B. Peterson,et al.  Systematic effects in measurement of black hole masses by emission-line reverberation of active galactic nuclei: Eddington ratio and inclination , 2006, astro-ph/0603460.

[23]  J. Lehár,et al.  Probing the Coevolution of Supermassive Black Holes and Galaxies Using Gravitationally Lensed Quasar Hosts , 2006, astro-ph/0603248.

[24]  Astronomy,et al.  The Radius-Luminosity Relationship for Active Galactic Nuclei: The Effect of Host-Galaxy Starlight on Luminosity Measurements , 2006, astro-ph/0602412.

[25]  Douglas M. Summers,et al.  The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Performance Characterization , 2006 .

[26]  Douglas M. Summers,et al.  The W. M. Keck Observatory Laser Guide Star Adaptive Optics System: Overview , 2006 .

[27]  Measuring Stellar Velocity Dispersions in Active Galaxies , 2005, astro-ph/0512462.

[28]  L. Ho,et al.  Probing the Coevolution of Supermassive Black Holes and Quasar Host Galaxies , 2005, astro-ph/0509155.

[29]  P. Lira,et al.  Black Hole Masses and Host Galaxy Evolution of Radio-Loud Active Galactic Nuclei , 2005, astro-ph/0506316.

[30]  D. Maoz,et al.  The Relationship between Luminosity and Broad-Line Region Size in Active Galactic Nuclei , 2005, astro-ph/0504484.

[31]  M. Goad,et al.  MCG–6-30-15: long time-scale X-ray variability, black hole mass and active galactic nuclei high states , 2005, astro-ph/0503100.

[32]  Laura Ferrarese,et al.  Supermassive Black Holes in Galactic Nuclei: Past, Present and Future Research , 2004, astro-ph/0411247.

[33]  S. Ciroi,et al.  Stellar velocity dispersion in narrow‐line Seyfert 1 galaxies , 2005 .

[34]  Bradley M. Peterson,et al.  Supermassive Black Holes in Active Galactic Nuclei. II. Calibration of the Black Hole Mass-Velocity Dispersion Relationship for Active Galactic Nuclei , 2004 .

[35]  T. Treu,et al.  The Relation Between Black Hole Mass and Velocity Dispersion at z ~ 0.37 , 2004, astro-ph/0410007.

[36]  P. Lira,et al.  The Fundamental Plane Evolution of Active Galactic Nucleus Host Galaxies , 2004, astro-ph/0409006.

[37]  K. Gebhardt,et al.  The Relationship Between Black Hole Mass and Velocity Dispersion in Seyfert 1 Galaxies , 2004, astro-ph/0407383.

[38]  Hebrew University,et al.  Supermassive Black Holes in Active Galactic Nuclei. II. Calibration of the Black Hole Mass-Velocity Dispersion Relationship for Active Galactic Nuclei , 2004, astro-ph/0407297.

[39]  B. M. Peterson,et al.  Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database , 2004, astro-ph/0407299.

[40]  J. Dunlop,et al.  The cosmological evolution of quasar black hole masses , 2003, astro-ph/0405393.

[41]  Alfred Krabbe,et al.  Data reduction pipeline for OSIRIS, the new NIR diffraction-limited imaging field spectrograph for the Keck adaptive optics system , 2002, SPIE Astronomical Telescopes + Instrumentation.

[42]  P. Martini,et al.  Coevolution of Black Holes and Galaxies , 2004 .

[43]  T. Treu,et al.  The Dark Matter Distribution in the Central Regions of Galaxy Clusters: Implications for Cold Dark Matter , 2003, astro-ph/0309465.

[44]  L. Ho,et al.  A Study of the Direct Fitting Method for Measurement of Galaxy Velocity Dispersions , 2002, astro-ph/0209564.

[45]  C. Urry,et al.  Active Galactic Nucleus Black Hole Masses and Bolometric Luminosities , 2002, astro-ph/0207249.

[46]  R. McLure,et al.  Measuring the black hole masses of high-redshift quasars , 2002, astro-ph/0204473.

[47]  H. Epps,et al.  ESI, a New Keck Observatory Echellette Spectrograph and Imager , 2002, astro-ph/0204297.

[48]  B. Peterson,et al.  Determining Central Black Hole Masses in Distant Active Galaxies and Quasars. II. Improved Optical and UV Scaling Relationships , 2002, astro-ph/0601303.

[49]  S. Tremaine,et al.  The Slope of the Black Hole Mass versus Velocity Dispersion Correlation , 2002, astro-ph/0203468.

[50]  Bradley M. Peterson,et al.  Supermassive Black Holes in Active Galactic Nuclei. I. The Consistency of Black Hole Masses in Quiescent and Active Galaxies , 2001, astro-ph/0104380.

[51]  Ralf Bender,et al.  Black Hole Mass Estimates from Reverberation Mapping and from Spatially Resolved Kinematics , 2000, astro-ph/0007123.

[52]  Ralf Bender,et al.  A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion , 2000, astro-ph/0006289.

[53]  D. Merritt,et al.  A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[54]  Paul S. Smith,et al.  Reverberation Measurements for 17 Quasars and the Size-Mass-Luminosity Relations in Active Galactic Nuclei , 1999, astro-ph/9911476.

[55]  M. Malkan,et al.  Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. I. Comparing the Photoionization and Reverberation Techniques , 1999, astro-ph/9905224.

[56]  J. Krolik Active Galactic Nuclei , 1998 .

[57]  C. Nelson,et al.  Stellar and Gaseous Kinematics of Seyfert Galaxies. I. Spectroscopic Data , 1995 .

[58]  V. Marel,et al.  Velocity profiles of galaxies with claimed black holes – III. Observations and models for M87 , 1994 .

[59]  K. Horne,et al.  AN OPTIMAL EXTRACTION ALGORITHM FOR CCD SPECTROSCOPY. , 1986 .

[60]  A. V. Filippenko,et al.  THE IMPORTANCE OF ATMOSPHERIC DIFFERENTIAL REFRACTION IN SPECTROPHOTOMETRY. , 1982 .

[61]  James E. Gunn,et al.  AN EFFICIENT LOW RESOLUTION AND MODERATE RESOLUTION SPECTROGRAPH FOR THE HALE TELESCOPE , 1982 .