Root Resorptions in Upper First Premolars after Application of Continuous Torque Moment Intra-Individual Study

AbstractMaterial and Method: With the purpose of investigating the occurrence, localization and extension of possible root resorptions after fixed appliance treatment with a continuous torque force, 28 upper first premolars orthodontically indicated for extraction from 14 patients were analyzed by scanning electron microscopy. Tooth movement was carried out with continuous moments of different magnitudes (300 cNmm, and 600 cNmm), using a biomechanical model with superelastic wires (stainless steel-NiTi-SE), which was specially designed and individually calibrated. The teeth were divided into one control group with four premolars (non-moved) from two patients, and two experimental groups (300 cNmm and 600 cNmm respectively) with six patients each. Each group was distributed intra-individually as follows: the right first premolar of six patients was extracted after 1 week of movement, the left first premolars were removed after 2, 3 and 4 weeks. After extraction, teeth were fixed, treated with 2% sodium hypochlorite solution for 6 hours in order to remove the organic tissue components, dehydrated, and metalcoated in a Balzers SCD 050 apparatus. Results: The analysis in a scanning electron microscope (Jeol 6100, at 10–15 kV) revealed many resorption lacunae in the root surface, mainly on the lingual side in the apical third of the roots. Resorption processes were also observed on the buccal root surface in the cervical third. All experimental teeth showed resorption areas. Teeth which had been moved for a longer time period and with a higher magnitude of applied moments showed a higher degree of root resorption in width as well as in depth. Higher magnitude of moments produced exposure of root dentine, evidencing pronounced root resorption.ZusammenfassungMaterial und Methode: 28 erste obere Prämolaren von 14 Patienten, die aus kieferorthopädischen Gründen zur Extraktion vorgesehen waren, wurden rasterelektronenmikroskopisch untersucht, um die Präsenz, die Lage und die Ausdehnung möglicher Wurzelresorptionen während kontinuierlichem Torque zu untersuchen. Das kontinuierliche Moment unterschiedlicher Größe (300 cNmm und 600 cNmm) wurde durchgeführt mit Hilfe einer biomechanischen Apparatur mit superelastischen Drähten (NiTi-SE-Stahl), die individuell entwickelt und kalibriert war. Es erfolgte eine Einteilung der Zähne in eine Kontrollgruppe mit vier Prämolaren (nicht bewegt) von zwei Patienten und zwei experimentelle Gruppen (300 cNmm und 600 cNmm) von jeweils sechs Patienten. Jede Gruppe wurde intraindividuell wie folgt eingeteilt: Die ersten rechten Prämolaren von sechs Patienten wurden, nachdem sie 1 Woche bewegt wurden, extrahiert, die ersten linken Prämolaren wurde jeweils nach 2, 3 und 4 Wochen extrahiert. Nach der Extraktion wurden die Zähne für 6 Stunden in 2% Natriumhypochloritlösung gelegt, um die organischen Teile zu entfernen. Es erfolgte die Trocknung und Metallbeschichtung im Balzers-SCD-050-Gerät. Ergebnisse: Die Untersuchung mit dem Rasterelektronenmikroskop zeigte viele Konkavitäten (Resortionslakunen), die sich hauptsächlich auf der lingualen Fläche des apikalen Wurzeldrittels befanden. Diese fanden sich auch auf der bukkalen Fläche des zervikalen Drittels. Alle bewegten Zähne wiesen resorptive Bereiche auf. Zähne, die über einen längeren Zeitraum mit größeren Momenten bewegt worden waren, zeigten stärkere Resorptionen in Breite und Tiefe. Größere Momente erzeugten eine Freilegung des Dentins und ausgeprägte Wurzelresorptionen.

[1]  M I Puente,et al.  Initial stress differences between tipping and torque movements. A three-dimensional finite element analysis. , 1996, European journal of orthodontics.

[2]  E. F. Harris,et al.  Directions of orthodontic tooth movements associated with external apical root resorption of the maxillary central incisor. , 1998, American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics.

[3]  E. Rauch Torque and its application to orthodontics , 1959 .

[4]  H P Lu,et al.  [Three dimensional finite element analysis of stress induced by orthodontic forces in the periodontal tissue]. , 1994, Zhonghua kou qiang yi xue za zhi = Zhonghua kouqiang yixue zazhi = Chinese journal of stomatology.

[5]  Sims Mr,et al.  Root resorption in bicuspid intrusion. A scanning electron microscope study. , 1982 .

[6]  D. Lundgren,et al.  The effects of a four-fold increased orthodontic force magnitude on tooth movement and root resorptions. An intra-individual study in adolescents. , 1996, European journal of orthodontics.

[7]  I. Mjör,et al.  Pulp and dentine reactions to experimental tooth intrusion. A histologic study of the initial changes. , 1970, American journal of orthodontics.

[8]  T. Meling,et al.  On mechanical properties of square and rectangular stainless steel wires tested in torsion. , 1997, American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics.

[9]  J. Andreasen,et al.  Radiographic assessment of simulated root resorption cavities. , 1987, Endodontics & dental traumatology.

[10]  G Rau,et al.  Concept and development of a measuring system for in vivo recording of orthodontically applied forces and torques in the multiband technique. Part I. , 1996, Journal of orofacial orthopedics = Fortschritte der Kieferorthopadie : Organ/official journal Deutsche Gesellschaft fur Kieferorthopadie.

[11]  N. Waters,et al.  A Comparison of the Forces Required to Produce Tooth Movement ex vivo through Three Types of Pre-adjusted Brackets When Subjected to Determined Tip or Torque Values , 1994, British journal of orthodontics.

[12]  E. Katchburian,et al.  Junctions between early developing osteoblasts of rat calvaria as revealed by freeze-fracture and ultrathin section electron microscopy. , 1995, Archives of histology and cytology.

[13]  C Bourauel,et al.  An experimental apparatus for the simulation of three-dimensional movements in orthodontics. , 1992, Journal of biomedical engineering.

[14]  C J Burstone,et al.  Chinese NiTi wire--a new orthodontic alloy. , 1985, American journal of orthodontics.

[15]  D. Wayne,et al.  Mechanical properties of orthodontic wires in tension, bending, and torsion. , 1982, American journal of orthodontics.

[16]  G Rau,et al.  Measuring system for in vivo recording of force systems in orthodontic treatment-concept and analysis of accuracy. , 1999, Journal of biomechanics.

[17]  K Reitan,et al.  Initial tissue behavior during apical root resorption. , 2009, The Angle orthodontist.

[18]  D Lundgren,et al.  Effects of a doubled orthodontic force magnitude on tooth movement and root resorptions. An inter-individual study in adolescents. , 1996, European journal of orthodontics.

[19]  F. Benenati Root resorption: types and treatment. , 1997, General dentistry.

[20]  N. Brezniak,et al.  Root resorption after orthodontic treatment: Part 1. Literature review. , 1993, American journal of orthodontics and dentofacial orthopedics : official publication of the American Association of Orthodontists, its constituent societies, and the American Board of Orthodontics.

[21]  G. Andreasen,et al.  Laboratory and clinical analyses of nitinol wire. , 1978, American journal of orthodontics.

[22]  W. M. Wainwright Faciolingual tooth movement: its influence on the root and cortical plate. , 1973, American Journal of Orthodontics.