Machine learning with persistent homology and chemical word embeddings improves prediction accuracy and interpretability in metal-organic frameworks

[1]  Jihan Kim,et al.  Applications of machine learning in metal-organic frameworks , 2020, Coordination Chemistry Reviews.

[2]  Katherine A. Yelick,et al.  PersGNN: Applying Topological Data Analysis and Geometric Deep Learning to Structure-Based Protein Function Prediction , 2020, ArXiv.

[3]  M. Bauchy,et al.  Revealing hidden medium-range order in amorphous materials using topological data analysis , 2020, Science Advances.

[4]  Peter G. Boyd,et al.  Understanding the diversity of the metal-organic framework ecosystem , 2020, Nature Communications.

[5]  Zhiwei Qiao,et al.  Machine learning and in silico discovery of metal-organic frameworks: Methanol as a working fluid in adsorption-driven heat pumps and chillers , 2020 .

[6]  K. Gkagkas,et al.  A Universal Machine Learning Algorithm for Large Scale Screening of Materials. , 2020, Journal of the American Chemical Society.

[7]  Berend Smit,et al.  Big-Data Science in Porous Materials: Materials Genomics and Machine Learning , 2020, Chemical reviews.

[8]  D. Morozov,et al.  Topological Descriptors Help Predict Guest Adsorption in Nanoporous Materials , 2020, The Journal of Physical Chemistry C.

[9]  Jeffrey S. Camp,et al.  Advances, Updates, and Analytics for the Computation-Ready, Experimental Metal–Organic Framework Database: CoRE MOF 2019 , 2019, Journal of Chemical & Engineering Data.

[10]  Diego A. Gómez-Gualdrón,et al.  Adsorption Isotherm Predictions for Multiple Molecules in MOFs Using the Same Deep Learning Model. , 2019, Journal of chemical theory and computation.

[11]  Olga Kononova,et al.  Unsupervised word embeddings capture latent knowledge from materials science literature , 2019, Nature.

[12]  Bruce C. Gates,et al.  Catalysis by Metal Organic Frameworks: Perspective and Suggestions for Future Research , 2019, ACS Catalysis.

[13]  Kyle Chard,et al.  Matminer: An open source toolkit for materials data mining , 2018, Computational Materials Science.

[14]  Ryther Anderson,et al.  Role of Pore Chemistry and Topology in the CO2 Capture Capabilities of MOFs: From Molecular Simulation to Machine Learning , 2018, Chemistry of Materials.

[15]  Giorgos Borboudakis,et al.  Chemically intuited, large-scale screening of MOFs by machine learning techniques , 2017, npj Computational Materials.

[16]  Ranjan Srivastava,et al.  Machine Learning Using Combined Structural and Chemical Descriptors for Prediction of Methane Adsorption Performance of Metal Organic Frameworks (MOFs). , 2017, ACS combinatorial science.

[17]  Paweł Dłotko,et al.  Quantifying similarity of pore-geometry in nanoporous materials , 2017, Nature Communications.

[18]  Tu Lee,et al.  Crystallization process development of metal–organic frameworks by linking secondary building units, lattice nucleation and luminescence: insight into reproducibility , 2017 .

[19]  A. McGaughey,et al.  Effect of pore size and shape on the thermal conductivity of metal-organic frameworks , 2016, Chemical science.

[20]  Peter G. Boyd,et al.  A generalized method for constructing hypothetical nanoporous materials of any net topology from graph theory , 2016 .

[21]  Michael Fernandez,et al.  Geometrical Properties Can Predict CO2 and N2 Adsorption Performance of Metal-Organic Frameworks (MOFs) at Low Pressure. , 2016, ACS combinatorial science.

[22]  Henry Adams,et al.  Persistence Images: A Stable Vector Representation of Persistent Homology , 2015, J. Mach. Learn. Res..

[23]  Maciej Haranczyk,et al.  What Are the Best Materials To Separate a Xenon/Krypton Mixture? , 2015 .

[24]  C. Cramer,et al.  Quantum-Chemical Characterization of the Properties and Reactivities of Metal-Organic Frameworks. , 2015, Chemical reviews.

[25]  François-Xavier Coudert,et al.  Responsive Metal–Organic Frameworks and Framework Materials: Under Pressure, Taking the Heat, in the Spotlight, with Friends , 2015 .

[26]  G. Qian,et al.  Methane storage in metal-organic frameworks. , 2014, Chemical Society reviews.

[27]  Michael O'Keeffe,et al.  Topological analysis of metal-organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. , 2014, Chemical reviews.

[28]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[29]  Li-Chiang Lin,et al.  Similarity-driven discovery of zeolite materials for adsorption-based separations. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[30]  Jianrong Li,et al.  Metal-organic frameworks for separations. , 2012, Chemical reviews.

[31]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[32]  Maciej Haranczyk,et al.  Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials , 2012 .

[33]  C. Wilmer,et al.  Large-scale screening of hypothetical metal-organic frameworks. , 2012, Nature chemistry.

[34]  Iwan Sumirat,et al.  Theoretical consideration of the effect of porosity on thermal conductivity of porous materials , 2006 .

[35]  Omar M Yaghi,et al.  Gas Adsorption Sites in a Large-Pore Metal-Organic Framework , 2005, Science.

[36]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[37]  Poonam P. Khot,et al.  A Survey , 2015 .

[38]  L. Breiman Random Forests , 2001, Machine Learning.

[39]  H. Edelsbrunner,et al.  Persistent Homology — a Survey , 2022 .