Nonparametric estimation of general multivariate tail dependence and applications to financial time series

In order to analyse the entire tail dependence structure among random variables in a multidimensional setting, we present and study several nonparametric estimators of general tail dependence functions. These estimators measure tail dependence in different orthants, complementing the commonly studied positive (lower and upper) tail dependence. This approach is in line with the parametric analysis of general tail dependence. Under this unifying approach the different dependencies are analysed using the associated copulas. We generalise estimators of the lower and upper tail dependence coefficient to the general multivariate tail dependence function and study their statistical properties. Tail dependence measures come as a response to the incapability of the correlation coefficient as an extreme dependence measure. We run a Monte Carlo simulation study to assess the performance of the nonparametric estimators. We also employ selected estimators in two empirical applications to detect and measure the general multivariate non-positive tail dependence in financial data, which popular parametric copula models commonly applied in the financial literature fail to capture.

[1]  Aristidis K. Nikoloulopoulos,et al.  Vine copulas with asymmetric tail dependence and applications to financial return data , 2012, Comput. Stat. Data Anal..

[2]  Harry Joe,et al.  Tail Dependence in Vine Copulae , 2010 .

[3]  Thorsten Schmidt,et al.  Coping with Copulas , 2006 .

[4]  J. Segers Asymptotics of empirical copula processes under non-restrictive smoothness assumptions , 2010, 1012.2133.

[5]  Claudia Czado,et al.  Maximum likelihood estimation of mixed C-vines with application to exchange rates , 2012 .

[6]  H. Joe Multivariate models and dependence concepts , 1998 .

[7]  R. Aggarwal,et al.  The nature and efficiency of the gold market , 1988 .

[8]  Yuri Salazar General Multivariate Dependence Using Associated Copulas , 2011 .

[9]  Brahim Brahimi Statistics of Bivariate Extreme Values , 2014 .

[10]  Ming-Heng Zhang,et al.  Modelling total tail dependence along diagonals , 2008 .

[11]  P. Hansen,et al.  A Forecast Comparison of Volatility Models: Does Anything Beat a Garch(1,1)? , 2004 .

[12]  E. Luciano,et al.  Copula methods in finance , 2004 .

[13]  Marta Susana Ferreira Nonparametric estimation of the tail-dependence coefficient , 2013 .

[14]  I. Olkin,et al.  Families of Multivariate Distributions , 1988 .

[15]  L. Summers,et al.  Gibson's Paradox and the Gold Standard , 1985, Journal of Political Economy.

[16]  Robert E. Whaley,et al.  The Investor Fear Gauge , 2000 .

[17]  John G. McDonald,et al.  Valuation and Strategy for Gold Stocks* , 1977 .

[18]  P. Hartmann,et al.  Asset Market Linkages in Crisis Periods , 2001, Review of Economics and Statistics.

[19]  C. Czado,et al.  Bayesian inference for multivariate copulas using pair-copula constructions. , 2010 .

[20]  M. Fischer,et al.  A note on a non-parametric tail dependence estimator , 2006 .

[21]  Hugues Langlois,et al.  Is the Potential for International Diversi?cation Disappearing? A Dynamic Copula Approach , 2012 .

[22]  Aristidis K. Nikoloulopoulos,et al.  Tail dependence functions and vine copulas , 2010, J. Multivar. Anal..

[23]  Aristidis K. Nikoloulopoulos,et al.  Extreme value properties of multivariate t copulas , 2009 .

[24]  PAUL EMBRECHTS,et al.  Modelling of extremal events in insurance and finance , 1994, Math. Methods Oper. Res..

[25]  Terence C. Mills,et al.  Gold as a hedge against the dollar , 2005 .

[26]  J. Rank Copulas: From theory to application in Finance , 2006 .

[27]  A. Krajina An M-estimator of multivariate tail dependence , 2010 .

[28]  E. Luciano,et al.  Copula Methods in Finance: Cherubini/Copula , 2004 .

[29]  Markus Junker,et al.  Estimating the tail-dependence coefficient: Properties and pitfalls , 2005 .

[30]  P. Embrechts,et al.  Quantitative Risk Management: Concepts, Techniques, and Tools , 2005 .

[31]  Robert E. Wright,et al.  Short-run and long-run determinants of the price of gold , 2006 .

[32]  R. Nelsen An Introduction to Copulas , 1998 .

[33]  Wing Lon Ng,et al.  Analysing financial contagion and asymmetric market dependence with volatility indices via copulas , 2012 .

[34]  Eric Bouyé,et al.  Copulas for Finance - A Reading Guide and Some Applications , 2000 .

[35]  Janet E. Heffernan,et al.  Dependence Measures for Extreme Value Analyses , 1999 .

[36]  Rafael Schmidt,et al.  Non‐parametric Estimation of Tail Dependence , 2006 .

[37]  Friedrich Schmid,et al.  Nonparametric estimation of the lower tail dependence λ L in bivariate copulas , 2005 .

[38]  Harry Joe,et al.  Parametric families of multivariate distributions with given margins , 1993 .

[39]  C. Klüppelberg,et al.  Modelling Extremal Events , 1997 .

[40]  Paul Embrechts,et al.  For example, , 2022 .

[41]  J. Wellner,et al.  Empirical Processes with Applications to Statistics , 2009 .

[42]  Marco Rocco,et al.  Extreme Value Theory in Finance: A Survey , 2014 .

[43]  K. Doksum,et al.  Correlation Curves: Measures of Association as Functions of Covariate Values , 1993 .

[44]  Sidney Resnick,et al.  Smoothing the Hill Estimator , 1997, Advances in Applied Probability.

[45]  Andrew J. Patton Modelling Asymmetric Exchange Rate Dependence , 2006 .