Two isolates of Fusarium proliferatum from different habitats and global locations have similar abilities to degrade lignin.

[1]  K. Eriksson,et al.  Biotechnology in the pulp and paper industry , 1990, Wood Science and Technology.

[2]  P. Fenn,et al.  Relationship of nitrogen to the onset and suppression of ligninolytic activity and secondary metabolism in Phanerochaete chrysosporium , 1981, Archives of Microbiology.

[3]  A. Ball,et al.  Degradation of alkali-lignin residues from solid-state fermentation of wheat straw by streptomycetes , 2004, Biodegradation.

[4]  K. Haider,et al.  Decomposition of specifically 14C-labelled phenols and dehydropolymers of coniferyl alcohol as models for lignin degradation by soft and white rot fungi , 2004, Archives of Microbiology.

[5]  J. Hernandez,et al.  Relationship between mineralization of synthetic lignins and the generation of hydroxyl radicals by laccase and a low molecular weight substance produced by Petriellidium fusoideum , 2002 .

[6]  A. Anderson,et al.  Laccase isozymes: production by an opportunistic pathogen, a Fusarium proliferatum isolate from wheat☆ , 2001 .

[7]  A. Anderson,et al.  Gene sequence analysis of an opportunistic wheat pathogen, an isolate of Fusarium proliferatum , 2001 .

[8]  A. Anderson,et al.  Differential production of superoxide dismutase and catalase isozymes during infection of wheat by a Fusarium proliferatum -like fungal isolate , 2001 .

[9]  F. J. Ruiz-Dueñas,et al.  Description of a Versatile Peroxidase Involved in the Natural Degradation of Lignin That Has Both Manganese Peroxidase and Lignin Peroxidase Substrate Interaction Sites* , 1999, The Journal of Biological Chemistry.

[10]  R. Plattner,et al.  Incidence of Fusarium spp. and Levels of Fumonisin B1 in Maize in Western Kenya , 1999, Applied and Environmental Microbiology.

[11]  D. Cullen,et al.  Expression of Phanerochaete chrysosporium Genes Encoding Lignin Peroxidases, Manganese Peroxidases, and Glyoxal Oxidase in Wood , 1998, Applied and Environmental Microbiology.

[12]  D. Cullen,et al.  Phanerochaete chrysosporiumCellobiohydrolase and Cellobiose Dehydrogenase Transcripts in Wood , 1998, Applied and Environmental Microbiology.

[13]  D. L. Bishop,et al.  Seedborne fungal contamination: consequences in space-grown wheat. , 1997, Phytopathology.

[14]  A. Rodríguez,et al.  Lignin Degradation and Modification by the Soil-Inhabiting Fungus Fusarium proliferatum , 1997, Applied and environmental microbiology.

[15]  R. Conner,et al.  Fusarium proliferation: a new causal agent of black point in wheat , 1996 .

[16]  M. Sbaghi,et al.  Degradation of stilbene‐type phytoalexins in relation to the pathogenicity of Botrytis cinerea to grapevines , 1996 .

[17]  W. Marasas,et al.  Characterization of Fusarium isolates from gladiolus corms pathogenic to pines , 1995 .

[18]  W. Elmer Association between Mn-reducing root bacteria and NaCl applications in suppression of Fusarium crown and root rot of asparagus. , 1995 .

[19]  O. Milstein,et al.  Effect of Penicillium chrysogenum on Lignin Transformation , 1994, Applied and environmental microbiology.

[20]  A. Logrieco,et al.  Occurrence and Pathogenicity of Fusarium Species in Banana Fruits , 1993 .

[21]  F. Archibald,et al.  A new assay for lignin-type peroxidases employing the dye azure B , 1992, Applied and environmental microbiology.

[22]  Robert A. Blanchette,et al.  Microbial and Enzymatic Degradation of Wood and Wood Components , 2012, Springer Series in Wood Science.

[23]  S. Patrick,et al.  Fusarium species isolated from wheat samples containing tombstone (scab) kernels from Ontario, Manitoba, and Saskatchewan. , 1990 .

[24]  L. Raaska,et al.  Detection of white-rot fungi by a non-toxic stain , 1990 .

[25]  R. Bourbonnais,et al.  Veratryl alcohol oxidases from the lignin-degrading basidiomycete Pleurotus sajor-caju. , 1988, The Biochemical journal.

[26]  H. Abbas,et al.  Mycotoxins and Fusarium spp. associated with infected ears of corn in Minnesota , 1988, Applied and environmental microbiology.

[27]  E. Harel,et al.  Repression of laccase formation in Botrytis cinerea and its possible relation to phytopathogenicity , 1988 .

[28]  P. Kersten,et al.  Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium , 1987, Journal of bacteriology.

[29]  R. Farrell,et al.  Enzymatic "combustion": the microbial degradation of lignin. , 1987, Annual review of microbiology.

[30]  K. L. Shuttleworth,et al.  Production of induced laccase by the fungus Rhizoctonia praticola , 1986 .

[31]  A. Leonowicz,et al.  Cooperation between fungal laccase and glucose oxidase in the degradation of lignin derivatives , 1986 .

[32]  M. Tien,et al.  Lignin-degrading enzyme from Phanerochaete chrysosporium: Purification, characterization, and catalytic properties of a unique H(2)O(2)-requiring oxygenase. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[33]  R. Willson,et al.  Radical-cations as reference chromogens in kinetic studies of ono-electron transfer reactions: pulse radiolysis studies of 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate) , 1982 .

[34]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.