The three dimensional inverse scattering problem for acoustic waves

Abstract We consider the inverse scattering problem for an acoustically soft obstacle in R 3 . By assuming a priori that the unknown scattering obstacle is starlike and has its boundary lying in a compact family of Holder continuously differentiable surfaces, it is shown that an optimal solution can be constructed which depends continuously on the measured far field data. Remarks are made on the numerical approximation of the optimal solution.

[1]  Peter Werner,et al.  Über das Dirichletsche Außenraumproblem für die Helmholtzsche Schwingungsgleichung , 1965 .

[2]  P. Sabatier On geophysical inverse problems and constraints , 1976 .

[3]  Jean Cea Identification de Domains , 1973, Optimization Techniques.

[4]  G. Backus,et al.  Uniqueness in the inversion of inaccurate gross Earth data , 1970, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[5]  R. Kleinman,et al.  Boundary integral equations for the Helmholtz equation: The third boundary value problem , 1982 .

[6]  F. Ursell,et al.  On the exterior problems of acoustics , 1973, Mathematical Proceedings of the Cambridge Philosophical Society.

[7]  K. Madsen An Algorithm for Minimax Solution of Overdetermined Systems of Non-linear Equations , 1975 .

[8]  G. Alistair Watson,et al.  An Algorithm for Minimax Approximation in the Nonlinear Case , 1969, Comput. J..

[9]  A. Roger,et al.  Newton-Kantorovitch algorithm applied to an electromagnetic inverse problem , 1981 .

[10]  R. E. Kleinman,et al.  Boundary Integral Equations for the Three-Dimensional Helmholtz Equation , 1974 .

[11]  D. S. Jones,et al.  INTEGRAL EQUATIONS FOR THE EXTERIOR ACOUSTIC PROBLEM , 1974 .

[12]  David Colton,et al.  Stable methods for solving the inverse scattering problem for a cylinder , 1981, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[13]  R. Leis Über das neumannsche randwertproblem für die helmholtzsche schwingungsgleichung , 1958 .

[14]  An integral equation governing electromagnetic waves , 1955 .