Complexity classification of exact and approximate counting problems

xi

[1]  Jin-Yi Cai,et al.  Inapproximability after Uniqueness Phase Transition in Two-Spin Systems , 2012, COCOA.

[2]  Jin-Yi Cai,et al.  Holographic Algorithms with Matchgates Capture Precisely Tractable Planar #CSP , 2017, SIAM J. Comput..

[3]  Leslie Hogben,et al.  Combinatorial Matrix Theory , 2013 .

[4]  Dirk Llewellyn Vertigan On the computational complexity of tutte, jones, homfly and kauffman invariants (tutte polynomial, jones polynomial, homfly polynomial, kauffman polynomial) , 1991 .

[5]  Liang Li,et al.  Approximate counting via correlation decay in spin systems , 2012, SODA.

[6]  Leslie G. Valiant,et al.  NP is as easy as detecting unique solutions , 1985, STOC '85.

[7]  Jin-Yi Cai,et al.  Computational Complexity of Holant Problems , 2011, SIAM J. Comput..

[8]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[9]  Elliott H. Lleb Residual Entropy of Square Ice , 1967 .

[10]  Keisuke Fujii,et al.  Quantum Commuting Circuits and Complexity of Ising Partition Functions , 2013, ArXiv.

[11]  Alexander Schrijver,et al.  Characterizing partition functions of the vertex model , 2011, 1102.4985.

[12]  Alan D. Sokal The multivariate Tutte polynomial (alias Potts model) for graphs and matroids , 2005, Surveys in Combinatorics.

[13]  Eric Vigoda,et al.  Inapproximability of the Partition Function for the Antiferromagnetic Ising and Hard-Core Models , 2012, Combinatorics, Probability and Computing.

[14]  Leslie G. Valiant Expressiveness of matchgates , 2002, Theor. Comput. Sci..

[15]  W. Dur,et al.  Quantum algorithms for classical lattice models , 2011, 1104.2517.

[16]  Jin-Yi Cai,et al.  Holographic algorithms by Fibonacci gates , 2013 .

[17]  Piyush Srivastava,et al.  Spatial Mixing and Approximation Algorithms for Graphs with Bounded Connective Constant , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[18]  Jason Morton,et al.  Holographic algorithms without matchgates , 2009, ArXiv.

[19]  Allan Sly,et al.  The Computational Hardness of Counting in Two-Spin Models on d-Regular Graphs , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[20]  Martin E. Dyer,et al.  The Complexity of Weighted Boolean #CSP with Mixed Signs , 2009, Theor. Comput. Sci..

[21]  Alexander Schrijver Characterizing partition functions of the spin model by rank growth , 2012 .

[22]  L. Onsager Crystal statistics. I. A two-dimensional model with an order-disorder transition , 1944 .

[23]  Leslie Ann Goldberg,et al.  A Counterexample to rapid mixing of the Ge-Stefankovic Process , 2011, ArXiv.

[24]  Leslie Ann Goldberg,et al.  Counting Homomorphisms to Cactus Graphs Modulo 2 , 2014, STACS.

[25]  Pinyan Lu,et al.  FPTAS for Counting Weighted Edge Covers , 2014, ESA.

[26]  Jin-Yi Cai,et al.  Some Results on Matchgates and Holographic Algorithms , 2007, Int. J. Softw. Informatics.

[27]  Leslie Ann Goldberg,et al.  The Complexity of Approximating complex-valued Ising and Tutte partition functions , 2014, computational complexity.

[28]  Leslie G. Valiant Some observations on holographic algorithms , 2017, computational complexity.

[29]  Leslie Ann Goldberg,et al.  Inapproximability of the Tutte polynomial , 2006, STOC '07.

[30]  Dirk L. Vertigan,et al.  The Computational Complexity of Tutte Invariants for Planar Graphs , 2005, SIAM J. Comput..

[31]  Martin E. Dyer,et al.  The complexity of approximating conservative counting CSPs , 2012, 1208.1783.

[32]  Jin-Yi Cai,et al.  Gadgets and anti-gadgets leading to a complexity dichotomy , 2012, ITCS '12.

[33]  G. Forney,et al.  Codes on graphs: normal realizations , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[34]  Jin-Yi Cai,et al.  From Holant to #CSP and Back: Dichotomy for Holantc Problems , 2012, Algorithmica.

[35]  Pinyan Lu,et al.  A Simple FPTAS for Counting Edge Covers , 2013, SODA.

[36]  Frank Kelly,et al.  Stochastic Models of Computer Communication Systems , 1985 .

[37]  Pinyan Lu,et al.  The Complexity of Ferromagnetic Two-spin Systems with External Fields , 2014, APPROX-RANDOM.

[38]  L. Lovasz,et al.  Reflection positivity, rank connectivity, and homomorphism of graphs , 2004, math/0404468.

[39]  M. .. Moore Exactly Solved Models in Statistical Mechanics , 1983 .

[40]  Elchanan Mossel,et al.  On the hardness of sampling independent sets beyond the tree threshold , 2007, math/0701471.

[41]  Martin E. Dyer,et al.  A Random Polynomial Time Algorithm for Approximating the Volume of Convex Bodies , 1989, STOC.

[42]  Allan Sly,et al.  Computational Transition at the Uniqueness Threshold , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[43]  Martin E. Dyer,et al.  An approximation trichotomy for Boolean #CSP , 2010, J. Comput. Syst. Sci..

[44]  Eric Vigoda,et al.  Ferromagnetic Potts Model: Refined #BIS-hardness and Related Results , 2014, APPROX-RANDOM.

[45]  Liang Li,et al.  Correlation Decay up to Uniqueness in Spin Systems , 2013, SODA.

[46]  D. Welsh,et al.  On the computational complexity of the Jones and Tutte polynomials , 1990, Mathematical Proceedings of the Cambridge Philosophical Society.

[47]  Richard J. Lipton,et al.  On Tractable Exponential Sums , 2010, FAW.

[48]  Martin E. Dyer,et al.  The complexity of counting graph homomorphisms , 2000, Random Struct. Algorithms.

[49]  Martin E. Dyer,et al.  On counting independent sets in sparse graphs , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[50]  Leslie G. Valiant,et al.  Holographic Algorithms (Extended Abstract) , 2004, FOCS.

[51]  S. Margulies,et al.  Polynomial-time solvable #CSP problems via algebraic models and Pfaffian circuits , 2013, J. Symb. Comput..

[52]  Pinyan Lu,et al.  A Dichotomy for Real Weighted Holant Problems , 2012, 2012 IEEE 27th Conference on Computational Complexity.

[53]  A. Sinclair,et al.  Spatial mixing and the connective constant: optimal bounds , 2015, SODA 2015.

[54]  T. D. Lee,et al.  Statistical Theory of Equations of State and Phase Transitions. II. Lattice Gas and Ising Model , 1952 .

[55]  Richard E. Ladner,et al.  On the Structure of Polynomial Time Reducibility , 1975, JACM.

[56]  Eric Vigoda,et al.  A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries , 2004, JACM.

[57]  Mark Jerrum,et al.  Approximating the Permanent , 1989, SIAM J. Comput..

[58]  M. Bremner,et al.  Temporally unstructured quantum computation , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[59]  Michel Las Vergnas,et al.  On the evaluation at (3, 3) of the Tutte polynomial of a graph , 1988, J. Comb. Theory, Ser. B.

[60]  Dror Weitz,et al.  Counting independent sets up to the tree threshold , 2006, STOC '06.

[61]  David Gamarnik,et al.  Simple deterministic approximation algorithms for counting matchings , 2007, STOC '07.

[62]  Eric Vigoda,et al.  Improved Mixing Condition on the Grid for Counting and Sampling Independent Sets , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[63]  P. W. Kasteleyn The Statistics of Dimers on a Lattice , 1961 .

[64]  Dan J. Shepherd,et al.  Binary Matroids and Quantum Probability Distributions , 2010, ArXiv.

[65]  Leslie Ann Goldberg,et al.  The computational complexity of two‐state spin systems , 2003, Random Struct. Algorithms.

[66]  Eric Vigoda,et al.  Improved Inapproximability Results for Counting Independent Sets in the Hard-Core Model , 2011, APPROX-RANDOM.

[67]  Mingji Xia Holographic Reduction: A Domain Changed Application and its Partial Converse Theorems , 2011, Int. J. Softw. Informatics.

[68]  Leslie G. Valiant,et al.  Quantum Circuits That Can Be Simulated Classically in Polynomial Time , 2002, SIAM J. Comput..

[69]  Leslie Ann Goldberg,et al.  A Complexity Dichotomy for Partition Functions with Mixed Signs , 2008, SIAM J. Comput..

[70]  Elliott H. Lieb,et al.  A general Lee-Yang theorem for one-component and multicomponent ferromagnets , 1981 .

[71]  Y. Bugeaud Approximation by Algebraic Numbers , 2004 .

[72]  Jin-Yi Cai,et al.  Holographic reduction, interpolation and hardness , 2012, computational complexity.

[73]  Dmitriy Katz,et al.  Correlation decay and deterministic FPTAS for counting list-colorings of a graph , 2007, SODA '07.

[74]  Leslie Ann Goldberg,et al.  Approximating the Partition Function of the Ferromagnetic Potts Model , 2010, ICALP.

[75]  Eric Vigoda,et al.  #BIS-Hardness for 2-Spin Systems on Bipartite Bounded Degree Graphs in the Tree Non-uniqueness Region , 2014, APPROX-RANDOM.

[76]  Andrei A. Bulatov,et al.  The complexity of partition functions , 2005, Theor. Comput. Sci..

[77]  Martin E. Dyer,et al.  The Relative Complexity of Approximate Counting Problems , 2000, Algorithmica.

[78]  Jin-Yi Cai,et al.  Spin systems on k-regular graphs with complex edge functions , 2012, Theor. Comput. Sci..

[79]  Jin-Yi Cai,et al.  Dichotomy for Holant problems of Boolean domain , 2011, SODA '11.

[80]  Jin-Yi Cai,et al.  A complete dichotomy rises from the capture of vanishing signatures: extended abstract , 2013, STOC '13.

[81]  Ding‐Zhu Du,et al.  Wiley Series in Discrete Mathematics and Optimization , 2014 .

[82]  Heng Guo,et al.  The Complexity of Planar Boolean #CSP with Complex Weights , 2012, ICALP.

[83]  Jin-Yi Cai,et al.  Holographic Algorithms Beyond Matchgates , 2014, ICALP.

[84]  Martin E. Dyer,et al.  The expressibility of functions on the boolean domain, with applications to counting CSPs , 2011, JACM.

[85]  Richard Jozsa,et al.  Classical simulation complexity of extended Clifford circuits , 2013, Quantum Inf. Comput..

[86]  Leslie Ann Goldberg,et al.  The Complexity of Computing the Sign of the Tutte Polynomial , 2012, SIAM J. Comput..

[87]  Jin-Yi Cai,et al.  Dichotomy theorems for holant problems , 2010 .

[88]  J. Scott Provan,et al.  The Complexity of Counting Cuts and of Computing the Probability that a Graph is Connected , 1983, SIAM J. Comput..

[89]  John Faben The complexity of counting solutions to Generalised Satisfiability Problems modulo k , 2008, ArXiv.

[90]  D. Welsh Complexity: Knots, Colourings and Counting: Link polynomials and the Tait conjectures , 1993 .

[91]  Martin E. Dyer,et al.  The Complexity of Weighted Boolean #CSP , 2009, SIAM J. Comput..

[92]  Eric Vigoda,et al.  Improved bounds for sampling colorings , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[93]  D. Gamarnik,et al.  Counting without sampling: Asymptotics of the log-partition function for certain statistical physics models , 2008 .

[94]  Leslie Ann Goldberg,et al.  The Complexity of Ferromagnetic Ising with Local Fields , 2006, Combinatorics, Probability and Computing.

[95]  M. Fisher,et al.  Dimer problem in statistical mechanics-an exact result , 1961 .

[96]  Jin-Yi Cai,et al.  Partition functions on kk-regular graphs with {0, 1}{0, 1}-vertex assignments and real edge functions , 2013, Theor. Comput. Sci..

[97]  Leslie G. Valiant,et al.  The Complexity of Symmetric Boolean Parity Holant Problems , 2013, SIAM J. Comput..

[98]  Mark Jerrum,et al.  Polynomial-Time Approximation Algorithms for the Ising Model , 1990, SIAM J. Comput..

[99]  Mark Jerrum,et al.  The Complexity of Parity Graph Homomorphism: An Initial Investigation , 2013, Theory Comput..

[100]  E. Ising Beitrag zur Theorie des Ferromagnetismus , 1925 .

[101]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[102]  R. Jozsa,et al.  Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[103]  Jin-Yi Cai,et al.  Holographic algorithms: From art to science , 2011, J. Comput. Syst. Sci..

[104]  Piyush Srivastava,et al.  Approximation Algorithms for Two-State Anti-Ferromagnetic Spin Systems on Bounded Degree Graphs , 2011, Journal of Statistical Physics.

[105]  Leslie G. Valiant,et al.  The Complexity of Enumeration and Reliability Problems , 1979, SIAM J. Comput..

[106]  Pinyan Lu,et al.  Improved FPTAS for Multi-spin Systems , 2013, APPROX-RANDOM.

[107]  Chen Ning Yang,et al.  The Spontaneous Magnetization of a Two-Dimensional Ising Model , 1952 .

[108]  Martin E. Dyer,et al.  On Markov Chains for Independent Sets , 2000, J. Algorithms.

[109]  Tom Brylawski,et al.  Matroid Applications: The Tutte Polynomial and Its Applications , 1992 .

[110]  A. Ziv Relative distance—an error measure in round-off error analysis , 1982 .

[111]  Heng Guo,et al.  Uniqueness, Spatial Mixing, and Approximation for Ferromagnetic 2-Spin Systems , 2016, APPROX-RANDOM.

[112]  Jin-Yi Cai,et al.  The complexity of complex weighted Boolean #CSP , 2014, J. Comput. Syst. Sci..

[113]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[114]  Elchanan Mossel,et al.  Exact thresholds for Ising–Gibbs samplers on general graphs , 2009, The Annals of Probability.

[115]  Mingji Xia,et al.  The Complexity of Weighted Boolean #CSP Modulo k , 2011, STACS.

[116]  Qi Ge,et al.  A Graph Polynomial for Independent Sets of Bipartite Graphs , 2009, Combinatorics, Probability and Computing.

[117]  Jin-Yi Cai,et al.  Graph Homomorphisms with Complex Values: A Dichotomy Theorem , 2013, SIAM J. Comput..

[118]  Pinyan Lu,et al.  FPTAS for Weighted Fibonacci Gates and Its Applications , 2014, ICALP.

[119]  Leslie Ann Goldberg,et al.  Approximating the partition function of planar two-state spin systems , 2012, J. Comput. Syst. Sci..

[120]  A. Sinclair,et al.  Fast mixing for independent sets, colorings, and other models on trees , 2007 .

[121]  Pinyan Lu,et al.  FPTAS for Counting Monotone CNF , 2015, SODA.

[122]  Jin-Yi Cai,et al.  On the Theory of Matchgate Computations , 2007, Twenty-Second Annual IEEE Conference on Computational Complexity (CCC'07).

[123]  Leslie Ann Goldberg,et al.  Counting Homomorphisms to Square-Free Graphs, Modulo 2 , 2016, TOCT.

[124]  Leslie G. Valiant,et al.  Random Generation of Combinatorial Structures from a Uniform Distribution , 1986, Theor. Comput. Sci..

[125]  Jin-Yi Cai,et al.  On Symmetric Signatures in Holographic Algorithms , 2007, STACS.

[126]  Eric Vigoda,et al.  Inapproximability for antiferromagnetic spin systems in the tree non-uniqueness region , 2013, STOC.

[127]  Jin-Yi Cai,et al.  A Holant Dichotomy: Is the FKT Algorithm Universal? , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.