Transcriptome ‐ wide association study of breast cancer risk by estrogen ‐ receptor status

Previous transcriptome‐wide association studies (TWAS) have identified breast cancer risk genes by integrating data from expression quantitative loci and genome‐wide association studies (GWAS), but analyses of breast cancer subtype‐specific associations have been limited. In this study, we conducted a TWAS using gene expression data from GTEx and summary statistics from the hitherto largest GWAS meta‐analysis conducted for breast cancer overall, and by estrogen receptor subtypes (ER+ and ER−). We further compared associations with ER+ and ER− subtypes, using a case‐only TWAS approach. We also conducted multigene conditional analyses in regions with multiple TWAS associations. Two genes, STXBP4 and HIST2H2BA, were specifically associated with ER+ but not with ER– breast cancer. We further identified 30 TWAS‐significant genes associated with overall breast cancer risk, including four that were not identified in previous studies. Conditional analyses identified single independent breast‐cancer gene in three of six regions harboring multiple TWAS‐significant genes. Our study provides new information on breast cancer genetics and biology, particularly about genomic differences between ER+ and ER− breast cancer.

Jack A. Taylor | W. Chung | S. Cross | M. Beckmann | P. Fasching | C. Weinberg | C. Vachon | K. Czene | P. Hall | K. Humphreys | F. Couch | H. Brenner | J. Chang-Claude | S. Chanock | M. García-Closas | B. Bonanni | R. Hoover | O. Olopade | B. Karlan | J. Benítez | G. Giles | J. Hopper | C. Haiman | E. John | A. Spurdle | T. Dörk | M. Southey | A. Cox | D. Easton | P. Kraft | G. Rennert | R. Scott | A. Hollestelle | J. Martens | A. Broeks | D. Lambrechts | J. Peto | E. Khusnutdinova | M. Greene | K. Offit | A. Antoniou | J. Spinelli | Å. Borg | H. Brauch | V. Kristensen | J. Long | X. Shu | W. Zheng | A. Ziogas | H. Anton-Culver | P. Guénel | U. Menon | R. Barkardottir | A. Dunning | D. Eccles | O. Fletcher | N. Johnson | G. Chenevix-Trench | S. Bojesen | H. Nevanlinna | N. Bogdanova | R. Tollenaar | P. Devilee | R. Milne | A. González-Neira | U. Hamann | A. Mannermaa | C. Lázaro | K. Nathanson | S. Lindström | C. Clarke | J. Garber | C. Isaacs | K. Michailidou | J. Dennis | M. Schmidt | M. Bolla | Qin Wang | T. Muranen | K. Aittomäki | C. Blomqvist | A. Meindl | R. Schmutzler | E. Makalic | D. Schmidt | S. Canisius | H. Flyger | T. Truong | B. Burwinkel | E. Sawyer | I. Andrulis | G. Glendon | A. Mulligan | S. Margolin | M. Hooning | J. Stone | V. Arndt | A. Swerdlow | M. Goldberg | R. Winqvist | K. Pylkäs | T. Brüning | P. Radice | P. Peterlongo | S. Manoukian | A. Jakubowska | J. Lubiński | A. Toland | F. Fostira | Q. Cai | J. Simard | P. Pharoah | M. Eriksson | M. Schoemaker | S. Neuhausen | C. V. van Asperen | M. Bermisheva | H. Christiansen | T. Park-Simon | D. Torres | A. V. D. van den Ouweland | M. Robson | M. Dwek | W. Tapper | D. Yannoukakos | L. McGuffog | A. Godwin | D. Campa | E. Friedman | S. Gapstur | N. Tung | E. Imyanitov | P. Ganz | A. Osorio | P. Hulick | A. Gusev | B. Wappenschmidt | P. Auer | J. Taylor | S. Domchek | B. Pasaniuc | N. Lindor | H. Risch | A. Viel | D. Frost | F. Hogervorst | C. Engel | C. Singer | K. Claes | J. Rantala | B. Arun | K. Aronson | A. Arason | I. Campbell | O. Díez | M. U. Rashid | Austin Miller | B. Poppe | D. Plaseska-Karanfilska | F. Nielsen | P. James | M. Daly | A. Jung | M. Manoochehri | Camilla Wendt | K. Punie | D. Goldgar | D. Barnes | M. Thomassen | J. García-Saenz | F. Moreno | B. Ejlertsen | B. Boeckx | D. Sandler | L. Nikitina-Zake | J. Lester | C. Cybulski | M. Teixeira | I. Nevelsteen | L. Fritschi | J. Balmaña | J. Weitzel | M. Tischkowitz | M. Terry | J. Heyworth | J. Gronwald | M. Martínez | J. Castelao | F. Lesueur | Wei He | H. Olsson | M. Gabrielson | M. Gaudet | E. Oláh | P. Soucy | D. Barrowdale | M. Montagna | T. Caldés | E. J. van Rensburg | M. Caligo | R. Janavicius | D. Leroux | Y. Laitman | A. Skytte | I. Pedersen | Á. Teulé | J. Loud | A. Romero | M. de la Hoya | S. Behrens | B. Carter | Carolina Ellberg | Guanmengqian Huang | M. Jakimovska | W. Lo | D. Mavroudis | N. Presneau | E. Saloustros | K. Thöne | Xiaohong R. Yang | A. Vega | K. Phillips | Xia Jiang | P. Sharma | J. Azzollini | K. Białkowska | I. Briceño | R. Jankowitz | P. Kapoor | I. Konstantopoulou | T. Maurer | J. Papp | M. Parsons | K. Prajzendanc | D. Thull | V. Joseph | K. De Leeneer | A. Peixoto | Lang Wu | Helian Feng | L. Moserle | Nisha Pradhan | Catarina Santos | A. Blanco | E. Asseryanis | Paula Vieiro-Balo | J. E. Castelao | Goska Leslie | L. Matricardi | Christopher R. Hake | J. Kiiski | I. dos-Santos-Silva | Priyanka Sharma | Zomoroda Abu-full | J. Carter | Ou Shu | A. Teule | J. Stone | Thérèse Truong | P. Hall | Kelly | A. Phillips | Xiao | R. Scott | Ana Peixoto

[1]  Hebon Investigators,et al.  Transcriptome-wide association study of breast cancer risk by estrogen-receptor status , 2020 .

[2]  Michael Wainberg,et al.  Opportunities and challenges for transcriptome-wide association studies , 2019, Nature Genetics.

[3]  A. Gusev,et al.  Probabilistic fine-mapping of transcriptome-wide association studies , 2017, Nature Genetics.

[4]  Jane E. Carpenter,et al.  Genome-wide association and transcriptome studies identify target genes and risk loci for breast cancer , 2019, Nature Communications.

[5]  A. Jemal,et al.  Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries , 2018, CA: a cancer journal for clinicians.

[6]  Jeffery M. Meyer,et al.  A transcriptome-wide association study of 229,000 women identifies new candidate susceptibility genes for breast cancer , 2018, Nature Genetics.

[7]  Peter Kraft,et al.  Transcriptome‐wide association studies accounting for colocalization using Egger regression , 2018, Genetic epidemiology.

[8]  Michael Jones,et al.  Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer , 2017, Nature Genetics.

[9]  Gary D Bader,et al.  Association analysis identifies 65 new breast cancer risk loci , 2017, Nature.

[10]  O. Olopade,et al.  Trans-ethnic predicted expression genome-wide association analysis identifies a gene for estrogen receptor-negative breast cancer , 2017, PLoS genetics.

[11]  Alexander Gusev,et al.  Integrating Gene Expression with Summary Association Statistics to Identify Genes Associated with 30 Complex Traits. , 2017, American journal of human genetics.

[12]  J. Witte,et al.  Cis-eQTL-based trans-ethnic meta-analysis reveals novel genes associated with breast cancer risk , 2017, PLoS genetics.

[13]  Dennis J. Hazelett,et al.  The OncoArray Consortium: A Network for Understanding the Genetic Architecture of Common Cancers , 2016, Cancer Epidemiology, Biomarkers & Prevention.

[14]  S. Cross,et al.  Fine scale mapping of the 17q22 breast cancer locus using dense SNPs, genotyped within the Collaborative Oncological Gene-Environment Study (COGs) , 2016, Scientific Reports.

[15]  Nicholas A. Sinnott-Armstrong,et al.  Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170 , 2016, Nature Genetics.

[16]  T. Lehtimäki,et al.  Integrative approaches for large-scale transcriptome-wide association studies , 2015, Nature Genetics.

[17]  Wei Zheng,et al.  Breast cancer risk variants at 6 q 25 display different phenotype associations and regulate ESR 1 , RMND 1 and CCDC 170 , 2016 .

[18]  Kaanan P. Shah,et al.  A gene-based association method for mapping traits using reference transcriptome data , 2015, Nature Genetics.

[19]  G. Kempermann Faculty Opinions recommendation of Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. , 2015 .

[20]  Jun S. Liu,et al.  The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans , 2015, Science.

[21]  Jane E. Carpenter,et al.  Prediction of Breast Cancer Risk Based on Profiling With Common Genetic Variants , 2015, JNCI Journal of the National Cancer Institute.

[22]  Patrick Neven,et al.  Genome-wide association analysis of more than 120,000 individuals identifies 15 new susceptibility loci for breast cancer , 2015 .

[23]  S. Cross,et al.  Identification and characterization of novel associations in the CASP8/ALS2CR12 region on chromosome 2 with breast cancer risk , 2022 .

[24]  D. Noh,et al.  Genome-wide association analysis in East Asians identifies breast cancer susceptibility loci at 1q32.1, 5q14.3 and 15q26.1 , 2014, Nature Genetics.

[25]  F. Verbeek,et al.  Annexin A2 depletion delays EGFR endocytic trafficking via cofilin activation and enhances EGFR signaling and metastasis formation , 2014, Oncogene.

[26]  Gaurav Bhatia,et al.  Fast and accurate imputation of summary statistics enhances evidence of functional enrichment , 2013, Bioinform..

[27]  Halverson,et al.  Identification and characterization of novel associations in the CASP 8 / ALS 2 CR 12 region on chromosome 2 with breast cancer risk , 2014 .

[28]  R. Young,et al.  Super-Enhancers in the Control of Cell Identity and Disease , 2013, Cell.

[29]  T. Dörk,et al.  Hereditary breast cancer: ever more pieces to the polygenic puzzle , 2013, Hereditary Cancer in Clinical Practice.

[30]  F. Bertolini Adipose tissue and breast cancer progression: a link between metabolism and cancer. , 2013, Breast.

[31]  B. Klein,et al.  The associations between a polygenic score, reproductive and menstrual risk factors and breast cancer risk , 2013, Breast Cancer Research and Treatment.

[32]  Patrick Neven,et al.  Genome-wide association studies identify four ER negative–specific breast cancer risk loci , 2013, Nature Genetics.

[33]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[34]  D. Easton,et al.  Evaluation of Association Methods for Analysing Modifiers of Disease Risk in Carriers of High‐Risk Mutations , 2012, Genetic epidemiology.

[35]  O. Delaneau,et al.  A linear complexity phasing method for thousands of genomes , 2011, Nature Methods.

[36]  Victoria L. Cafourek,et al.  Associations of breast cancer risk factors with tumor subtypes: a pooled analysis from the Breast Cancer Association Consortium studies. , 2011, Journal of the National Cancer Institute.

[37]  P. Visscher,et al.  GCTA: a tool for genome-wide complex trait analysis. , 2011, American journal of human genetics.

[38]  Mads Thomassen,et al.  Common breast cancer susceptibility alleles and the risk of breast cancer for BRCA1 and BRCA2 mutation carriers: implications for risk prediction. , 2010, Cancer research.

[39]  Yun Li,et al.  METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..

[40]  P. Visscher,et al.  Common SNPs explain a large proportion of heritability for human height , 2011 .

[41]  Deborah Hughes,et al.  Genome-wide association study identifies five new breast cancer susceptibility loci , 2010, Nature Genetics.

[42]  Montserrat Garcia-Closas,et al.  Genetic susceptibility to breast cancer , 2010, Molecular oncology.

[43]  Päivi Heikkilä,et al.  Subtyping of Breast Cancer by Immunohistochemistry to Investigate a Relationship between Subtype and Short and Long Term Survival: A Collaborative Analysis of Data for 10,159 Cases from 12 Studies , 2010, PLoS medicine.

[44]  N. Cox,et al.  Trait-Associated SNPs Are More Likely to Be eQTLs: Annotation to Enhance Discovery from GWAS , 2010, PLoS genetics.

[45]  S. Hodgson,et al.  Genomics and breast cancer: the different levels of inherited susceptibility , 2009, European Journal of Human Genetics.

[46]  P. Donnelly,et al.  A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies , 2009, PLoS genetics.

[47]  R. Eils,et al.  BRCA1-associated breast and ovarian cancer risks in Poland: no association with commonly studied polymorphisms , 2009, Breast Cancer Research and Treatment.

[48]  Christopher I Amos,et al.  Clinical and pathologic characteristics of patients with BRCA-positive and BRCA-negative breast cancer. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[49]  Matthias O. Franz,et al.  Plant Classification from Bat-Like Echolocation Signals , 2008, PLoS Comput. Biol..

[50]  K. Taylor,et al.  Genome-Wide Association , 2007, Diabetes.

[51]  Lester L. Peters,et al.  Genome-wide association study identifies novel breast cancer susceptibility loci , 2007, Nature.

[52]  Jaana M. Hartikainen,et al.  A common coding variant in CASP8 is associated with breast cancer risk , 2007, Nature Genetics.

[53]  R. Lyngsoe G. Hellenthal,et al.  Genome-wide association analysis , 2007 .

[54]  Nazneen Rahman,et al.  Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles , 2006, Nature Genetics.

[55]  J. Chang-Claude,et al.  A weighted cohort approach for analysing factors modifying disease risks in carriers of high‐risk susceptibility genes , 2005, Genetic epidemiology.