Enhancement of Asynchronous Release from Fast-Spiking Interneuron in Human and Rat Epileptic Neocortex

Asynchronous GABA release occurs at output synapses of fast-spiking interneurons in human and rat neocortex and is elevated in epileptic tissues from both species.

[1]  H. Markram,et al.  Disynaptic Inhibition between Neocortical Pyramidal Cells Mediated by Martinotti Cells , 2007, Neuron.

[2]  Zhiping P. Pang,et al.  Synaptotagmin-1 functions as the Ca2+-sensor for spontaneous release , 2009, Nature Neuroscience.

[3]  R. Schwarcz,et al.  Preferential neuronal loss in layer III of the medial entorhinal cortex in rat models of temporal lobe epilepsy , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  A. Aguzzi,et al.  Selective Alterations in GABAA Receptor Subtypes in Human Temporal Lobe Epilepsy , 2000, The Journal of Neuroscience.

[5]  D. McCormick,et al.  Enhancement of visual responsiveness by spontaneous local network activity in vivo. , 2007, Journal of neurophysiology.

[6]  J. E. Franck,et al.  Physiologic and Morphologic Characteristics of Granule Cell Circuitry in Human Epileptic Hippocampus , 1995, Epilepsia.

[7]  D. Coulter,et al.  Selective changes in single cell GABAA receptor subunit expression and function in temporal lobe epilepsy , 1998, Nature Medicine.

[8]  B. Sakmann,et al.  Dendritic GABA Release Depresses Excitatory Transmission between Layer 2/3 Pyramidal and Bitufted Neurons in Rat Neocortex , 1999, Neuron.

[9]  Shaul Hestrin,et al.  Synchronous versus asynchronous transmitter release: a tale of two types of inhibitory neurons , 2005, Nature Neuroscience.

[10]  T. Südhof,et al.  A dual-Ca2+-sensor model for neurotransmitter release in a central synapse , 2007, Nature.

[11]  L. Trussell,et al.  Inhibitory Transmission Mediated by Asynchronous Transmitter Release , 2000, Neuron.

[12]  R. Racine,et al.  Modification of seizure activity by electrical stimulation. II. Motor seizure. , 1972, Electroencephalography and clinical neurophysiology.

[13]  D. Johnston,et al.  Acquired Dendritic Channelopathy in Temporal Lobe Epilepsy , 2004, Science.

[14]  W G Regehr,et al.  Timing of synaptic transmission. , 1999, Annual review of physiology.

[15]  A. Marty,et al.  Developmental Changes in Parvalbumin Regulate Presynaptic Ca2+ Signaling , 2005, The Journal of Neuroscience.

[16]  D. McCormick,et al.  GABA as an inhibitory neurotransmitter in human cerebral cortex. , 1989, Journal of neurophysiology.

[17]  A. Alonso,et al.  Increased Persistent Sodium Currents in Rat Entorhinal Cortex Layer V Neurons in a Post–Status Epilepticus Model of Temporal Lobe Epilepsy , 2003, Epilepsia.

[18]  R. Racine,et al.  Modification of seizure activity by electrical stimulation. 3. Mechanisms. , 1972, Electroencephalography and clinical neurophysiology.

[19]  I. Módy,et al.  Zinc-Induced Collapse of Augmented Inhibition by GABA in a Temporal Lobe Epilepsy Model , 1996, Science.

[20]  Yousheng Shu,et al.  Membrane Potential-Dependent Modulation of Recurrent Inhibition in Rat Neocortex , 2011, PLoS biology.

[21]  Massimo Scanziani,et al.  Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex , 2007, Nature Neuroscience.

[22]  M. Carandini,et al.  Stimulus dependence of two-state fluctuations of membrane potential in cat visual cortex , 2000, Nature Neuroscience.

[23]  D. McCormick,et al.  Neocortical Network Activity In Vivo Is Generated through a Dynamic Balance of Excitation and Inhibition , 2006, The Journal of Neuroscience.

[24]  M. Calcagnotto,et al.  Mice lacking Dlx1 show subtype-specific loss of interneurons, reduced inhibition and epilepsy , 2005, Nature Neuroscience.

[25]  Niraj S. Desai,et al.  Activity-dependent scaling of quantal amplitude in neocortical neurons , 1998, Nature.

[26]  W. Regehr,et al.  Delayed Release of Neurotransmitter from Cerebellar Granule Cells , 1998, The Journal of Neuroscience.

[27]  D. McCormick,et al.  Turning on and off recurrent balanced cortical activity , 2003, Nature.

[28]  E. Lothman,et al.  Dormancy of inhibitory interneurons in a model of temporal lobe epilepsy. , 1993, Science.

[29]  Stefan Hefft,et al.  Asynchronous GABA release generates long-lasting inhibition at a hippocampal interneuron–principal neuron synapse , 2005, Nature Neuroscience.

[30]  R. Schneggenburger,et al.  Parvalbumin Is a Mobile Presynaptic Ca2+ Buffer in the Calyx of Held that Accelerates the Decay of Ca2+ and Short-Term Facilitation , 2007, The Journal of Neuroscience.

[31]  Y. Ben-Ari,et al.  Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy , 2001, Nature Neuroscience.

[32]  Andrea Hasenstaub,et al.  Barrages of Synaptic Activity Control the Gain and Sensitivity of Cortical Neurons , 2003, The Journal of Neuroscience.

[33]  Frances S. Chance,et al.  Gain Modulation from Background Synaptic Input , 2002, Neuron.

[34]  Gilad Silberberg,et al.  Polysynaptic subcircuits in the neocortex: spatial and temporal diversity , 2008, Current Opinion in Neurobiology.

[35]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[36]  R G Sola,et al.  Inhibitory neurons in the human epileptogenic temporal neocortex. An immunocytochemical study. , 1996, Brain : a journal of neurology.

[37]  M. Yamada,et al.  Postsynaptic Spiking Homeostatically Induces Cell-Autonomous Regulation of Inhibitory Inputs via Retrograde Signaling , 2010, The Journal of Neuroscience.

[38]  R. Zucker,et al.  Residual Ca2 + and short-term synaptic plasticity , 1994, Nature.

[39]  E. Cavalheiro,et al.  Limbic seizures produced by pilocarpine in rats: Behavioural, electroencephalographic and neuropathological study , 1983, Behavioural Brain Research.

[40]  M. Isokawa Decrement of GABAA receptor-mediated inhibitory postsynaptic currents in dentate granule cells in epileptic hippocampus. , 1996, Journal of neurophysiology.

[41]  R. S. Sloviter,et al.  Decreased hippocampal inhibition and a selective loss of interneurons in experimental epilepsy. , 1987, Science.

[42]  D. Prince,et al.  Functional Autaptic Neurotransmission in Fast-Spiking Interneurons: A Novel Form of Feedback Inhibition in the Neocortex , 2003, The Journal of Neuroscience.

[43]  D. Johnston,et al.  Seizure-Induced Plasticity of h Channels in Entorhinal Cortical Layer III Pyramidal Neurons , 2004, Neuron.

[44]  Peter Somogyi,et al.  Interneurons hyperpolarize pyramidal cells along their entire somatodendritic axis , 2009, Nature Neuroscience.

[45]  E. Halgren,et al.  Single-neuron dynamics in human focal epilepsy , 2011, Nature Neuroscience.

[46]  F. Dudek,et al.  In vivo intracellular analysis of granule cell axon reorganization in epileptic rats. , 1999, Journal of neurophysiology.

[47]  Gabor Szabo,et al.  Asynchronous Transmitter Release from Cholecystokinin-Containing Inhibitory Interneurons Is Widespread and Target-Cell Independent , 2009, The Journal of Neuroscience.

[48]  O. Caillard,et al.  Role of the calcium-binding protein parvalbumin in short-term synaptic plasticity. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[49]  P. Jonas,et al.  Dynamic Control of Presynaptic Ca2+ Inflow by Fast-Inactivating K+ Channels in Hippocampal Mossy Fiber Boutons , 2000, Neuron.

[50]  Y. Goda,et al.  Two components of transmitter release at a central synapse. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[51]  P. Jonas,et al.  How the 'slow' Ca2+ buffer parvalbumin affects transmitter release in nanodomain-coupling regimes , 2011, Nature Neuroscience.

[52]  P. Jonas,et al.  Nanodomain coupling between Ca2+ channels and sensors of exocytosis at fast mammalian synapses , 2011, Nature Reviews Neuroscience.

[53]  Masayuki Kobayashi,et al.  Reduced Inhibition of Dentate Granule Cells in a Model of Temporal Lobe Epilepsy , 2003, The Journal of Neuroscience.

[54]  Otto W Witte,et al.  Loss of GABAergic neurons in the subiculum and its functional implications in temporal lobe epilepsy. , 2008, Brain : a journal of neurology.

[55]  R. Silver,et al.  Shunting Inhibition Modulates Neuronal Gain during Synaptic Excitation , 2003, Neuron.

[56]  Jan A. Gorter,et al.  Progression of temporal lobe epilepsy in the rat is associated with immunocytochemical changes in inhibitory interneurons in specific regions of the hippocampal formation , 2004, Experimental Neurology.

[57]  S. Nelson,et al.  Homeostatic plasticity in the developing nervous system , 2004, Nature Reviews Neuroscience.

[58]  W. Regehr,et al.  Short-term synaptic plasticity. , 2002, Annual review of physiology.

[59]  R. S. Sloviter,et al.  Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: The “dormant basket cell” hypothesis and its possible relevance to temporal lobe epilepsy , 1991, Hippocampus.

[60]  M. Poo,et al.  Retrograde signaling at central synapses , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[61]  John R. Huguenard,et al.  Desynchronization of Neocortical Networks by Asynchronous Release of GABA at Autaptic and Synaptic Contacts from Fast-Spiking Interneurons , 2010, PLoS biology.

[62]  Heinz Beck,et al.  Plasticity of intrinsic neuronal properties in CNS disorders , 2008, Nature Reviews Neuroscience.

[63]  Giuseppe Biagini,et al.  The pilocarpine model of temporal lobe epilepsy , 2008, Journal of Neuroscience Methods.

[64]  S. Remy,et al.  A Persistent Little Current with a Big Impact on Epileptic Firing , 2011, Epilepsy currents.