of the 2015 ChaLeam AutoML Challenge

[1]  Bracha Shapira,et al.  Recommender Systems Handbook , 2015, Springer US.

[2]  Jasper Snoek,et al.  Multi-Task Bayesian Optimization , 2013, NIPS.

[3]  Michael I. Jordan On statistics, computation and scalability , 2013, ArXiv.

[4]  Michèle Sebag,et al.  Collaborative hyperparameter tuning , 2013, ICML.

[5]  David D. Cox,et al.  Making a Science of Model Search: Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures , 2013, ICML.

[6]  Kevin Leyton-Brown,et al.  Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms , 2012, KDD.

[7]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Tom Schaul,et al.  No more pesky learning rates , 2012, ICML.

[9]  Quan Sun,et al.  Full model selection in the space of data mining operators , 2012, GECCO '12.

[10]  Jasper Snoek,et al.  Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.

[11]  Yoshua Bengio,et al.  Algorithms for Hyper-Parameter Optimization , 2011, NIPS.

[12]  Kristin P. Bennett,et al.  Model selection for primal SVM , 2011, Machine Learning.

[13]  Kevin Leyton-Brown,et al.  Sequential Model-Based Optimization for General Algorithm Configuration , 2011, LION.

[14]  Isabelle Guyon,et al.  Model Selection: Beyond the Bayesian/Frequentist Divide , 2010, J. Mach. Learn. Res..

[15]  Hugo Jair Escalante,et al.  Particle Swarm Model Selection , 2009, J. Mach. Learn. Res..

[16]  Constantin F. Aliferis,et al.  A comprehensive comparison of random forests and support vector machines for microarray-based cancer classification , 2008, BMC Bioinformatics.

[17]  Gavin C. Cawley,et al.  Preventing Over-Fitting during Model Selection via Bayesian Regularisation of the Hyper-Parameters , 2007, J. Mach. Learn. Res..

[18]  S. Sathiya Keerthi,et al.  An Efficient Method for Gradient-Based Adaptation of Hyperparameters in SVM Models , 2006, NIPS.

[19]  Masoud Nikravesh,et al.  Feature Extraction: Foundations and Applications (Studies in Fuzziness and Soft Computing) , 2006 .

[20]  Robert Tibshirani,et al.  The Entire Regularization Path for the Support Vector Machine , 2004, J. Mach. Learn. Res..

[21]  Rich Caruana,et al.  Ensemble selection from libraries of models , 2004, ICML.

[22]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[23]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[24]  Bernhard Schölkopf,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.

[25]  Kristin P. Bennett,et al.  A Pattern Search Method for Model Selection of Support Vector Regression , 2002, SDM.

[26]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[27]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[28]  A. Doucet,et al.  Sequential MCMC for Bayesian model selection , 1999, Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics. SPW-HOS '99.

[29]  Pat Langley,et al.  Selection of Relevant Features and Examples in Machine Learning , 1997, Artif. Intell..

[30]  Ron Kohavi,et al.  Wrappers for feature selection , 1997 .

[31]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[32]  H. B. Barlow,et al.  Unsupervised Learning , 1989, Neural Computation.

[33]  B. Efron Estimating the Error Rate of a Prediction Rule: Improvement on Cross-Validation , 1983 .