Application of Support Vector Machines in Reciprocating Compressor Valve Fault Diagnosis

Support Vector Machine (SVM) is a very effective method for pattern recognition. In this article, a intelligent diagnosis system based on SVMs is presented to solve the problem that there is not effective method for reciprocating compressor valve fault detection. The Local Wave method was used to decompose vibration signals, which acquired from valves surface, into sub-band signals. Then the higher-order statistics were calculated as the input features of classification system. The experiment results confirm that the classification technique has high flexibility and reliability on valve condition monitoring.

[1]  Federico Girosi,et al.  An improved training algorithm for support vector machines , 1997, Neural Networks for Signal Processing VII. Proceedings of the 1997 IEEE Signal Processing Society Workshop.

[2]  N. Huang,et al.  The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis , 1998, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[3]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[4]  Bo-Suk Yang,et al.  Technical Note: A Condition Classification System for Reciprocating Compressors , 2004 .