Spectral reflectance‐compositional properties of spinels and chromites: Implications for planetary remote sensing and geothermometry

Reflectance spectra of spinels and chromites have been studied as a function of composition. These two groups of minerals are spectrally distinct, which relates largely to differences in the types of major cations present. Both exhibit a number of absorption features in the 0.326 μm region that show systematic variations with composition and can be used to quantify or constrain certain compositional parameters, such as cation abundances, and site occupancies. For spinels, the best correlations exist between Fe2+ content and wavelength positions of the 0.46, 0.93, 2.8, Restrahelen, 12.3, 16.2, and 17.5 μm absorption features, Al and Fe3+ content with the wavelength position of the 0.93 m absorption feature, and Cr content from the depth of the absorption band near 0.55 μm. For chromites, the best correlations exist between Cr content and wavelength positions of the 0.49, 0.59, 2, 17.5, and 23 μm absorption features, Fe2+ and Mg contents with the wavelength position of the 1.3 μm absorption feature, and Al content with the wavelength position of the 2 μm absorption feature. At shorter wavelengths, spinels and chromites are most readily distinguished by the wavelength position of the absorption band in the 2 m region ( 2.1 μm for chromite), while at longer wavelengths, spectral differences are more pronounced. The importance of being able to derive compositional information for spinels and chromites from spectral analysis stems from the relationship between composition and petrogenetic conditions (pressure, temperature, oxygen fugacity) and the widespread presence of spinels and chromites in the inner solar system. When coupled with the ability to derive compositional information for mafic silicates from spectral analysis, this opens up the possibility of deriving petrogenetic information for remote spinel- and chromite-bearing targets from analysis of their reflectance spectra.

[1]  K. Keil,et al.  Chromite composition in relation to chemistry and texture of ordinary chondrites. , 1967 .

[2]  J. Bell,et al.  S-asteroids 387 Aquitania and 980 Anacostia - Possible fragments of the breakup of a spinel-bearing parent body with CO3/CV3 affinities , 1992 .

[3]  A. Navrotsky,et al.  Cation distributions and thermodynamic properties of binary spinel solid solutions , 1984 .

[4]  G. Rossman,et al.  Hydroxyl contents of accessory minerals in mantle eclogites and related rocks , 1990 .

[5]  E. A. King,et al.  Tierra Blanca: an Unusual Achondrite from West Texas , 1981 .

[6]  V. Farmer The Anhydrous Oxide Minerals , 1974 .

[7]  C. P. Poole,et al.  The optical spectra and color of chromium containing solids , 1964 .

[8]  J. Nicholls,et al.  The equilibration temperature and pressure of various lava types with spinel-and garnet-peridotite , 1972 .

[9]  William B. White,et al.  Existence of Chromous Ion in the Spinel Solid Solution Series FeCr2O4‐MgCr2O4 , 1966 .

[10]  P. Buseck Pallasite meteorites—mineralogy, petrology and geochemistry , 1977 .

[11]  B. Wood,et al.  The breakdown of hercynite at low fO2 , 1990 .

[12]  W. White,et al.  Interpretation of the vibrational spectra of spinels , 1967 .

[13]  R. Howie,et al.  An Introduction to the Rock-Forming Minerals , 1966 .

[14]  R. C. Newton,et al.  The reversed alumina contents of orthopyroxene in equilibrium with spinel and forsterite in the system MgO-Al2O3-SiO2 , 1984 .

[15]  Mark S. Ghiorso,et al.  Chromian spinels as petrogenetic indicators : thermodynamics and petrological applications , 1991 .

[16]  F. Laves,et al.  Ordnung / Unordnung und Ultrarotabsorption III. Die Systeme MgAl2O4–Al2O3 und MgAl2O4–LiAl5O8 , 1961 .

[17]  T. Hiroi,et al.  Discovery and Analysis of Minor Absorption Bands in S-Asteroid Visible Reflectance Spectra , 1996 .

[18]  K. Keil,et al.  Al-rich objects in ordinary chondrites: Related origin of carbonaceous and ordinary chondrites and their constituents , 1984 .

[19]  Takahiro Hiroi,et al.  Reflectance Experiment Laboratory (RELAB) Description and User's Manual , 2004 .

[20]  K. Keil On the phase composition of meteorites , 1962 .

[21]  P. Tarte,et al.  Infrared studies of spinels—I: A critical discussion of the actual interpretations , 1971 .

[22]  I. Macgregor The effect of CaO, Cr2O3, Fe2O3 and Al2O3 on the stability of spinel and garnet peridotites , 1970 .

[23]  B. J. Wooo Order-disorder phenomena in MgAlrO 4 spinel , 2022 .

[24]  B. Wood,et al.  Upper mantle oxygen fugacity recorded by spinel lherzolites , 1986, Nature.

[25]  J. Smith Lunar mineralogy: a heavenly detective story. , 1974 .

[26]  P. Tarte,et al.  Infrared studies of spinels—III. The normal II-III spinels , 1971 .

[27]  M. Dyar,et al.  Redox equilibria and crystal chemistry of coexisting minerals from spinel lherzolite mantle xenoliths , 1989 .

[28]  P. Tarte,et al.  Infrared studies of spinels—II: The experimental bases for solving the assignment problem , 1971 .

[29]  H. O’Neill,et al.  The Olivine—Orthopyroxene—Spinel Oxygen Geobarometer, the Nickel Precipitation Curve, and the Oxygen Fugacity of the Earth's Upper Mantle , 1987 .

[30]  R. Clayton,et al.  Pyroxene Pallasites: A New Pallasite Grouplet , 1995 .

[31]  S. Taylor,et al.  THE COMPOSITION OF THE CHASSIGNY METEORITE , 1976 .

[32]  Z. Jiang,et al.  Infrared Spectroscopy , 2022 .

[33]  B. N. Powell Petrology and chemistry of mesosiderites—II. Silicate textures and compositions and metal-silicate relationships☆ , 1971 .

[34]  G. Wasserburg,et al.  Petrography of isotopically-dated clasts in the Kapoeta howardite and petrologic constraints on the evolution of its parent body , 1976 .

[35]  T. Irvine Chromian Spinel as a Petrogenetic Indicator: Part 1. Theory , 1965 .

[36]  P. Tarte,et al.  Infrared studies of spinels—IV: Normal spinels with a high-valency tetrahedral cation , 1972 .

[37]  T. Irvine CHROMIAN SPINEL AS A PETROGENETIC INDICATOR: PART 2. PETROLOGIC APPLICATIONS , 1967 .

[38]  G. A. Slack,et al.  FeAl 2 O 4 - MgAl 2 O 4 : Growth and Some Thermal, Optical, and Magnetic Properties of Mixed Single Crystals , 1964 .

[39]  G. Hunt SPECTRAL SIGNATURES OF PARTICULATE MINERALS IN THE VISIBLE AND NEAR INFRARED , 1977 .

[40]  M. Obata The solubility of Al 2 O 3 in orthopyroxenes in spinel and plagioclase peridotites and spinel pyroxenite , 1976 .

[41]  J. Fabriès Spinel-olivine geothermometry in peridotites from ultramafic complexes , 1979 .

[42]  H. McSween Carbonaceous chondrites of the Ornans type - A metamorphic sequence , 1977 .

[43]  C. M. Pieters,et al.  Strength of mineral absorption features in the transmitted component of near-infrared reflected light - First results from RELAB. [spectrogoniometer for planetary and lunar surface composition experiments] , 1983 .

[44]  C. Wagner,et al.  Aluminous spinels in lamproites; occurrence and probable significance , 1987 .

[45]  R L Egan,et al.  Optical Spectroscopy , 1988, Acta radiologica.

[46]  A. M. Evans An Introduction to Ore Geology , 1980 .

[47]  Carol M. Stockton,et al.  ‘Cobalt-Blue’ Gem Spinels , 1984 .

[48]  J. Smith,et al.  Lunar mineralogy; a heavenly detective story; Part II , 1976 .

[49]  B. Wood,et al.  High temperature electrical measurements and thermodynamic properties of Fe3O4-FeCr2O4-MgCr2O4-FeAl2O4 spinels , 1991 .

[50]  John B. Adams,et al.  4 – INTERPRETATION OF VISIBLE AND NEAR-INFRARED DIFFUSE REFLECTANCE SPECTRA OF PYROXENES AND OTHER ROCK-FORMING MINERALS , 1975 .

[51]  T. Irvine Crystallization sequences in the Muskox intrusion and other layered intrusions - II. Origin of chromitite layers and similar deposits of other magmatic ores , 1975 .

[52]  R. C. Newton,et al.  Experimental determination of the spinel peridotite to garnet peridotite reaction in the system MgO-Al2O3-SiO2 in the range 900 °–1100 °C and Al2O3 isopleths of enstatite in the spinel field , 1978 .

[53]  J. S. Reed Optical Absorption Spectra of Cr3+ in MgO·Al2O3‐MgO·3.5Al2O3 Spinels , 1971 .

[54]  B. Dickson,et al.  Low-temperature optical absorption and Moessbauer spectra of staurolite and spinel , 1976 .

[55]  A. Woronow,et al.  Pressure shifts of optical absorption bands in iron‐bearing garnet, spinel, olivine, pyroxene, and periclase , 1974 .

[56]  P. S. Ho,et al.  Polarized electronic spectra of Z‐DNA single crystals , 1990, Biopolymers.

[57]  G. Rossman Chapter 6. VIBRATIONAL SPECTROSCOPY OF HYDROUS COMPONENTS , 1988 .

[58]  B. W. Evans,et al.  Chrome-spinel in progressive metamorphism—a preliminary analysis , 1975 .

[59]  B. Wood,et al.  Magnetite activities across the MgAl2O4-Fe3O4 spinel join, with application to thermobarometric estimates of upper mantle oxygen fugacity , 1988 .

[60]  F. Laves,et al.  Ordnung/ Unordnung und Ultrarotabsorption , 1957 .

[61]  Alexandra Navrotsky,et al.  The thermodynamics of cation distributions in simple spinels , 1967 .

[62]  V. P. Orekhova,et al.  Optical absorption spectrum of excited Cr3+ ions in MgAl2O4 spinel crystals , 1971 .

[63]  D. Vaughan,et al.  2 – POLARIZED ELECTRONIC SPECTRA , 1975 .

[64]  E. Grave,et al.  Evaluation of ferrous and ferric Mössbauer fractions , 1991 .

[65]  J. Laul,et al.  Petrogenesis of the SNC (shergottites, nakhlites, chassignites) meteorites: Implications for their origin from a large dynamic planet, possibly Mars , 1984 .

[66]  Roger G. Burns,et al.  Mineralogical applications of crystal field theory , 1970 .

[67]  R. Batiza,et al.  Cr-rich spinels as petrogenetic indicators; MORB-type lavas from the Lamont seamount chain, eastern Pacific , 1988 .

[68]  B. W. Anderson Magnesium-Zinc-Spinels from Ceylon , 1937 .

[69]  Michael J. Gaffey,et al.  Calibrations of phase abundance, composition, and particle size distribution for olivine-orthopyroxene mixtures from reflectance spectra , 1986 .

[70]  R. Macfarlane,et al.  OPTICAL SPECTRUM OF CR(3+) IONS IN SPINELS, , 1968 .

[71]  P. Roeder,et al.  The distribution of Mg and Fe (super 2+) between olivine and spinel at 1300 degrees C , 1984 .

[72]  B. Murck,et al.  The effects of temperature, oxygen fugacity and melt composition on the behaviour of chromium in basic and ultrabasic melts , 1986 .

[73]  R. Clark,et al.  Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications , 1984 .

[74]  G. A. Slack,et al.  Optical Absorption of Tetrahedral Fe 2+ (3d 6 ) in Cubic ZnS, CdTe, and MgAl 2 O 4 , 1966 .

[75]  Vladimir S. Stubican,et al.  Divalent chromium in magnesium-chromium spinels , 1966 .

[76]  H. Mao,et al.  Crystal-field effects in spinel: oxidation states of iron and chromium , 1975 .

[77]  George R. Rossman,et al.  Vibrational spectroscopy of hydrous components , 1988 .

[78]  P. Roeder,et al.  A re-evaluation of the olivine-spinel geothermometer , 1979 .

[79]  H. Takeda,et al.  Mineralogy and cooling history of the calcium‐aluminum‐chromium enriched ureilite, Lewis Cliff 88774 , 1997 .

[80]  Michael O'Donoghue,et al.  Gems : their sources, descriptions and identification , 2006 .

[81]  W. Ridley,et al.  Relation of the spectroscopic reflectance of olivine to mineral chemistry and some remote sensing implications , 1987 .

[82]  W. R. Schmus,et al.  A survey of the unequilibrated ordinary chondrites , 1967 .

[83]  O. Eckstrand Canadian mineral deposit types : a geological synopsis , 1984 .

[84]  G. Rossman Chapter 7. OPTICAL SPECTROSCOPY , 1988 .

[85]  K. Keil,et al.  Ca–Al-rich chondrules and inclusions in ordinary chondrites , 1983, Nature.

[86]  R. Sack Spinels as petrogenetic indicators: Activity-composition relations at low pressures , 1982 .

[87]  D. Rumble Fe-Ti oxide minerals from regionally metamorphosed quartzites of western New Hampshire , 1973 .

[88]  B. Wood,et al.  High-temperature cation distributions in Fe3O4-MgAl2O4- MgFe2O4-FeAl2O4 spinels from thermopower and conductivity measurements , 1989 .

[89]  R. J. Floran,et al.  A Cumulate Dunite with Hydrous Amphibole-Bearing Melt Inclusions , 1978 .

[90]  Michael J. Gaffey,et al.  Pyroxene spectroscopy revisited - Spectral-compositional correlations and relationship to geothermometry , 1991 .