New physics searches with an optical dump at LUXE

We propose a novel way to search for feebly interacting massive particles, exploiting two properties of systems involving collisions between high energy electrons and intense laser pulses. The first property is that the electron-intense-laser collision results in a large flux of hard photons, as the laser behaves effectively as a thick medium. The second property is that the emitted photons free-stream inside the laser and thus for them the laser behaves effectively as a very thin medium. Combining these two features implies that the electron-intense-laser collision is an apparatus which can efficiently convert UV electrons to a large flux of hard, co-linear photons. We further propose to direct this unique large and hard flux of photons onto a physical dump which in turn is capable of producing feebly interacting massive particles, in a region of parameters that has never been probed before. We denote this novel apparatus as “optical dump” or NPOD (new physics search with optical dump). The proposed LUXE experiment at Eu.XFEL has all the required basic ingredients of the above experimental concept. We discuss how this concept can be realized in practice by adding a detector after the last physical dump of the experiment to reconstruct the two-photon decay product of a new spin-0 particle. We show that even with a relatively short dump, the search can still be background free. Remarkably, even with a 40 TW laser, which corresponds to the initial run, and definitely with a 350 TW laser, of the main run with one year of data taking, LUXE -NPOD will be able to probe uncharted territory of both models of pseudo-scalar and scalar fields, and in particular probe natural of scalar theories for masses above 100 MeV.

[1]  M. Marklund,et al.  Charged particle motion and radiation in strong electromagnetic fields , 2021, Reviews of Modern Physics.

[2]  B. King,et al.  From local to nonlocal: higher fidelity simulations of photon emission in intense laser pulses , 2021, New Journal of Physics.

[3]  Y. Soreq,et al.  Probing CP violation in photon self-interactions with cavities , 2021, Journal of High Energy Physics.

[4]  A. Boyarsky,et al.  Feebly-interacting particles: FIPs 2020 workshop report , 2021, The European Physical Journal C.

[5]  B. Heinemann,et al.  Conceptual design report for the LUXE experiment , 2021, The European Physical Journal Special Topics.

[6]  M. Neubert,et al.  The low-energy effective theory of axions and ALPs , 2020, Journal of High Energy Physics.

[7]  M. Chala,et al.  Running in the ALPs , 2020, The European Physical Journal C.

[8]  Kiwoon Choi,et al.  Recent Progress in the Physics of Axions and Axion-Like Particles , 2020, Annual Review of Nuclear and Particle Science.

[9]  Jaehoon Yu,et al.  Axionlike Particles at Future Neutrino Experiments: Closing the Cosmological Triangle. , 2020, Physical review letters.

[10]  Zhen Liu,et al.  Heavy axion opportunities at the DUNE near detector , 2020, Physical Review D.

[11]  R. Harnik,et al.  Axion searches with two superconducting radio-frequency cavities , 2020, Journal of High Energy Physics.

[12]  M. Kirsanov,et al.  Photoproduction of axionlike particles in the NA64 experiment , 2020 .

[13]  G. Kekelidze,et al.  Search for Axionlike and Scalar Particles with the NA64 Experiment. , 2020, Physical review letters.

[14]  A. B. Kaliyar,et al.  Search for Axionlike Particles Produced in e^{+}e^{-} Collisions at Belle II. , 2020, Physical review letters.

[15]  L. Martinazzoli Crystal Fibers for the LHCb Calorimeter Upgrade , 2020, IEEE Transactions on Nuclear Science.

[16]  Artur Lobanov,et al.  Precision timing calorimetry with the CMS HGCAL , 2020, Journal of Instrumentation.

[17]  Jiechen Jiang,et al.  High-granularity crystal calorimetry: conceptual designs and first studies , 2020, Journal of Instrumentation.

[18]  B. King,et al.  Locally monochromatic approximation to QED in intense laser fields , 2020, Physical Review A.

[19]  O. Matsedonskyi,et al.  Probing the relaxed relaxion at the luminosity and precision frontiers , 2020, Journal of High Energy Physics.

[20]  W. Altmannshofer,et al.  Constraining axionlike particles from rare pion decays , 2019, Physical Review D.

[21]  Arnulf Quadt,et al.  Oxford University Press : Review of Particle Physics, 2020-2021 , 2020 .

[22]  M. D'Onofrio,et al.  Physics Briefing Book [Input for the European Strategy for Particle Physics Update 2020] , 2019 .

[23]  B. Heinemann,et al.  Letter of Intent for the LUXE Experiment , 2019, 1909.00860.

[24]  J. T. Childers,et al.  FCC-ee: The Lepton Collider , 2019, The European Physical Journal Special Topics.

[25]  B. Dillon,et al.  Axion-like-particle decay in strong electromagnetic backgrounds , 2019, Journal of High Energy Physics.

[26]  C. Fanelli,et al.  Photoproduction of Axionlike Particles. , 2019, Physical review letters.

[27]  M. Spannowsky,et al.  A fresh look at ALP searches in fixed target experiments , 2019, Physics Letters B.

[28]  Y. Soreq,et al.  Probing Axionlike Particles and the Axiverse with Superconducting Radio-Frequency Cavities. , 2019, Physical review letters.

[29]  A. Rozanov,et al.  Physics beyond colliders at CERN: beyond the Standard Model working group report , 2019, Journal of Physics G: Nuclear and Particle Physics.

[30]  M. M. Najafabadi,et al.  New probes for axionlike particles at hadron colliders , 2019, Physical Review D.

[31]  J. Kotula,et al.  Performance and Molière radius measurements using a compact prototype of LumiCal in an electron test beam , 2018, The European Physical Journal C.

[32]  A. Hook TASI Lectures on the Strong CP Problem and Axions , 2018, Proceedings of Theoretical Advanced Study Institute Summer School 2018 "Theory in an Era of Data" — PoS(TASI2018).

[33]  M. Kando,et al.  Laser-Particle Collider for Multi-GeV Photon Production. , 2018, Physical review letters.

[34]  Mike Williams,et al.  Coupling QCD-Scale Axionlike Particles to Gluons. , 2018, Physical review letters.

[35]  X. C. Vidal,et al.  New axion searches at flavor factories , 2018, Journal of High Energy Physics.

[36]  J. Rafelski,et al.  Virtual axion-like particle Complement to Euler-Heisenberg-Schwinger action , 2018, Physics Letters B.

[37]  G. Perez,et al.  Coherent relaxion dark matter , 2018, Physical Review D.

[38]  B. Dillon,et al.  Light scalars: Coherent nonlinear Thomson scattering and detection , 2018, Physical Review D.

[39]  Martin Bauer,et al.  Axion-like particles at future colliders , 2018, The European Physical Journal C.

[40]  H. Murayama,et al.  Strongly interacting massive particles through the axion portal , 2018, Physical Review D.

[41]  The Cepc Study Group CEPC Conceptual Design Report: Volume 2 - Physics&Detector , 2018, 1811.10545.

[42]  D. Redigolo,et al.  The hierarchion, a relaxion addressing the Standard Model’s hierarchies , 2018, Journal of High Energy Physics.

[43]  Felix Kling,et al.  Axionlike particles at FASER: The LHC as a photon beam dump , 2018, Physical Review D.

[44]  Philip Schuster,et al.  Dark sectors at the Fermilab SeaQuest experiment , 2018, Physical Review D.

[45]  W. Bonivento Studies for the electro-magnetic calorimeter SplitCal for the SHiP experiment at CERN with shower direction reconstruction capability , 2018 .

[46]  B. King Electron-seeded ALP production and ALP decay in an oscillating electromagnetic field , 2018, Physics Letters B.

[47]  B. Dillon,et al.  ALP production through non-linear Compton scattering in intense fields , 2018, The European Physical Journal C.

[48]  I. Irastorza,et al.  New experimental approaches in the search for axion-like particles , 2018, Progress in Particle and Nuclear Physics.

[49]  D. Redigolo,et al.  New LHC bound on low-mass diphoton resonances , 2017, Physics Letters B.

[50]  C. Hearty,et al.  Revised constraints and Belle II sensitivity for visible and invisible axion-like particles , 2017, 1709.00009.

[51]  Martin Bauer,et al.  Collider probes of axion-like particles , 2017, 1708.00443.

[52]  Wenchao Yan,et al.  High-order multiphoton Thomson scattering , 2017, Nature Photonics.

[53]  A. Hartin Enhanced, high energy photon production from resonant Compton scattering in a strong external field , 2017, 1706.04823.

[54]  Brian Shuve,et al.  Searching for Axionlike Particles in Flavor-Changing Neutral Current Processes. , 2017, Physical review letters.

[55]  C. Zhang FoCal – A high granularity electromagnetic calorimeter for forward direct photon measurements , 2017 .

[56]  M. Pospelov,et al.  Muon Beam Experiments to Probe the Dark Sector , 2017, 1701.07437.

[57]  M. B. Gavela,et al.  ALPs effective field theory and collider signatures , 2017, The European physical journal. C, Particles and fields.

[58]  H. K. Lou,et al.  Searching for Axionlike Particles with Ultraperipheral Heavy-Ion Collisions. , 2016, Physical review letters.

[59]  C. Frugiuele,et al.  Phenomenology of relaxion-Higgs mixing , 2016, 1610.02025.

[60]  Kiwoon Choi,et al.  Constraints on relaxion windows , 2016, 1610.00680.

[61]  A. Hook,et al.  Relaxation from particle production , 2016, 1607.01786.

[62]  W. Marciano,et al.  Contributions of axionlike particles to lepton dipole moments , 2016, 1607.01022.

[63]  Michael Spannowsky,et al.  Probing MeV to 90 GeV axion-like particles with LEP and LHC , 2015, 1509.00476.

[64]  Lucio Rossi,et al.  High-Luminosity Large Hadron Collider (HL-LHC) : Preliminary Design Report , 2015 .

[65]  F. Kahlhoefer,et al.  ALPtraum: ALP production in proton beam dump experiments , 2015, 1512.03069.

[66]  D. Marsh,et al.  Axion Cosmology , 2015, 1510.07633.

[67]  S. Lamoreaux,et al.  Experimental Searches for the Axion and Axion-Like Particles , 2015, 1602.00039.

[68]  G. Perez,et al.  Is the relaxion an axion? , 2015, 1509.00047.

[69]  M. A. Cortés-Giraldo,et al.  Recent developments in GEANT4 , 2015 .

[70]  David E Kaplan,et al.  Cosmological Relaxation of the Electroweak Scale. , 2015, Physical review letters.

[71]  Matthew J. Dolan,et al.  A taste of dark matter: flavour constraints on pseudoscalar mediators , 2014, Journal of High Energy Physics.

[72]  Adi Bornheim Timing performance of the CMS electromagnetic calorimeter and prospects for the future , 2014 .

[73]  Ken Mimasu,et al.  ALPs at colliders , 2014, 1409.4792.

[74]  R. Frederix,et al.  The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations , 2014, 1405.0301.

[75]  C. Muller,et al.  Photo-production of scalar particles in the field of a circularly polarized laser beam , 2012, 1208.3595.

[76]  Stepan Bulanov,et al.  Strong Radiation-Damping Effects in a Gamma-Ray Source Generated by the Interaction of a High-Intensity Laser with a Wakefield-Accelerated Electron Beam , 2012 .

[77]  K. Z. Hatsagortsyan,et al.  Extremely high-intensity laser interactions with fundamental quantum systems , 2011, 1111.3886.

[78]  Claude Duhr,et al.  UFO - The Universal FeynRules Output , 2011, Comput. Phys. Commun..

[79]  F. Maltoni,et al.  MadGraph 5: going beyond , 2011, 1106.0522.

[80]  Z. Ligeti,et al.  Dark matter models with uniquely spin-dependent detection possibilities , 2010, 1012.5317.

[81]  T. E. Rodrigues,et al.  New Measurement of the π0 radiative decay width. , 2010, Physical review letters.

[82]  P. Schuster,et al.  New Fixed-Target Experiments to Search for Dark Gauge Forces , 2009, 0906.0580.

[83]  Jesse Thaler,et al.  Dark Matter through the Axion Portal , 2008, 0810.5397.

[84]  B. Grinstein,et al.  Distinguishing the higgs boson from the dilaton at the large hadron collider. , 2008, Physical review letters.

[85]  W. Heisenberg,et al.  Consequences of Dirac's theory of positrons , 2006 .

[86]  S. Incerti,et al.  Geant4 developments and applications , 2006, IEEE Transactions on Nuclear Science.

[87]  T. Gherghetta,et al.  Localized U(1) gauge fields, millicharged particles, and holography , 2005, hep-ph/0512356.

[88]  Thomas Weiland,et al.  XFEL: The European X-Ray Free-Electron Laser - Technical Design Report , 2006 .

[89]  S. Abel,et al.  Brane–antibrane kinetic mixing, millicharged particles and SUSY breaking , 2003, hep-th/0311051.

[90]  Richard J. K. Taylor,et al.  Multi-Photon Production in e + e − Collisions at √ s = 181 − 209 GeV The OPAL Collaboration , 2008 .

[91]  A. Dell'Acqua,et al.  Geant4 - A simulation toolkit , 2003 .

[92]  D. Bernard ON THE POTENTIAL OF LIGHT-BY-LIGHT SCATTERING FOR INVISIBLE AXION DETECTION , 1998 .

[93]  C. Kolda,et al.  Kinetic mixing and the supersymmetric gauge hierarchy , 1996, hep-ph/9610479.

[94]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[95]  T. Stelzer,et al.  Automatic generation of tree level helicity amplitudes , 1994, hep-ph/9401258.

[96]  V. P. Zhigunov,et al.  LIMITS ON THE MASS OF LIGHT (PSEUDO)SCALAR PARTICLES FROM BETHE-HEITLER e+e− and μ+μ− PAIR PRODUCTION IN A PROTON-IRON BEAM DUMP EXPERIMENT , 1992 .

[97]  V. P. Zhigunov,et al.  Limits on neutral light scalar and pseudoscalar particles in a proton beam dump experiment , 1991 .

[98]  Nelson,et al.  Search for neutral metastable penetrating particles produced in the SLAC beam dump. , 1988, Physical review. D, Particles and fields.

[99]  Y. Tsai,et al.  Axion bremsstrahlung by an electron beam. , 1986, Physical review. D, Particles and fields.

[100]  B. Holdom Two U(1)'s and Epsilon Charge Shifts , 1986 .

[101]  Michael Dine,et al.  The Not So Harmless Axion , 1983 .

[102]  John Preskill,et al.  Cosmology of the invisible axion , 1983 .

[103]  Laurence F Abbott,et al.  A cosmological bound on the invisible axion , 1983 .

[104]  V. I. Ritus Quantum effects of the interaction of elementary particles with an intense electromagnetic field , 1985 .

[105]  F. Wilczek Problem of Strong $P$ and $T$ Invariance in the Presence of Instantons , 1978 .

[106]  S. Weinberg A new light boson , 1978 .

[107]  Y. Tsai,et al.  Pair Production and Bremsstrahlung of Charged Leptons , 1974 .

[108]  A. I. Nikishov,et al.  Quantum Processes in the Field of a Plane Electromagnetic Wave and in a Constant Field 1 , 1964 .

[109]  L. Brown,et al.  Interaction of Intense Laser Beams with Electrons , 1964 .

[110]  H. Reiss Absorption of Light by Light , 1962 .

[111]  Julian Schwinger,et al.  On gauge invariance and vacuum polarization , 1951 .

[112]  W. H. Furry ON BOUND STATES AND SCATTERING IN POSITRON THEORY , 1951 .

[113]  Fritz Sauter,et al.  Über das Verhalten eines Elektrons im homogenen elektrischen Feld nach der relativistischen Theorie Diracs , 1931 .