Real‐Time Fluid Effects on Surfaces using the Closest Point Method

The Closest Point Method (CPM) is a method for numerically solving partial differential equations (PDEs) on arbitrary surfaces, independent of the existence of a surface parametrization. The CPM uses a closest point representation of the surface, to solve the unmodified Cartesian version of a surface PDE in a 3D volume embedding, using simple and well‐understood techniques. In this paper, we present the numerical solution of the wave equation and the incompressible Navier‐Stokes equations on surfaces via the CPM, and we demonstrate surface appearance and shape variations in real‐time using this method. To fully exploit the potential of the CPM, we present a novel GPU realization of the entire CPM pipeline. We propose a surface‐embedding adaptive 3D spatial grid for efficient representation of the surface, and present a high‐performance approach using CUDA for converting surfaces given by triangulations into this representation. For real‐time performance, CUDA is also used for the numerical procedures of the CPM. For rendering the surface (and the PDE solution) directly from the closest point representation without the need to reconstruct a triangulated surface, we present a GPU ray‐casting method that works on the adaptive 3D grid.

[1]  Huamin Wang,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2007) Solving General Shallow Wave Equations on Surfaces , 2022 .

[2]  Jack Bresenham,et al.  Algorithm for computer control of a digital plotter , 1965, IBM Syst. J..

[3]  Dziuk,et al.  SURFACE FINITE ELEMENTS FOR , 2007 .

[4]  M. Rumpf,et al.  Composite finite elements for 3D image based computing , 2009 .

[5]  Jacopo Pantaleoni,et al.  VoxelPipe: a programmable pipeline for 3D voxelization , 2011, HPG '11.

[6]  Gabriel Taubin,et al.  A signal processing approach to fair surface design , 1995, SIGGRAPH.

[7]  David S. Ebert,et al.  Conservative voxelization , 2007, The Visual Computer.

[8]  Elmar Eisemann,et al.  Single-pass GPU solid voxelization for real-time applications , 2008, Graphics Interface.

[9]  Lok Ming Lui,et al.  Solving PDEs on Manifolds with Global Conformal Parametriazation , 2005, VLSM.

[10]  John B. Greer,et al.  An Improvement of a Recent Eulerian Method for Solving PDEs on General Geometries , 2006, J. Sci. Comput..

[11]  Raphaëlle Chaine,et al.  Efficient Spherical Harmonics Representation of 3D Objects , 2007 .

[12]  John Amanatides,et al.  A Fast Voxel Traversal Algorithm for Ray Tracing , 1987, Eurographics.

[13]  Elmar Eisemann,et al.  Fast scene voxelization and applications , 2006, I3D '06.

[14]  Mark J. Harris,et al.  Parallel Prefix Sum (Scan) with CUDA , 2011 .

[15]  Hujun Bao,et al.  Real-time voxelization for complex polygonal models , 2004, 12th Pacific Conference on Computer Graphics and Applications, 2004. PG 2004. Proceedings..

[16]  Rüdiger Westermann,et al.  Sample-Based Surface Coloring , 2010, IEEE Transactions on Visualization and Computer Graphics.

[17]  Martin Rumpf,et al.  Surface processing methods for point sets using finite elements , 2004, Comput. Graph..

[18]  J. Marsden,et al.  A mathematical introduction to fluid mechanics , 1979 .

[19]  Yizhou Yu,et al.  Inviscid and incompressible fluid simulation on triangle meshes , 2004, Comput. Animat. Virtual Worlds.

[20]  Eugene Zhang,et al.  Fluid flow on interacting deformable surfaces , 2007, SIGGRAPH '07.

[21]  Greg Turk,et al.  Generating textures on arbitrary surfaces using reaction-diffusion , 1991, SIGGRAPH.

[22]  Colin B. Macdonald,et al.  Level Set Equations on Surfaces via the Closest Point Method , 2008, J. Sci. Comput..

[23]  Guillermo Sapiro,et al.  Variational Problems and Partial Differential Equations on Implicit Surfaces: Bye Bye Triangulated Surfaces? , 2003 .

[24]  Markus H. Gross,et al.  Robust and Efficient Wave Simulations on Deforming Meshes , 2008, Comput. Graph. Forum.

[25]  Chi-Wing Fu,et al.  Interactive Reaction-Diffusion on Surface Tiles , 2007, 15th Pacific Conference on Computer Graphics and Applications (PG'07).

[26]  Rüdiger Westermann,et al.  A Hexahedral Multigrid Approach for Simulating Cuts in Deformable Objects , 2011, IEEE Transactions on Visualization and Computer Graphics.

[27]  C. M. Elliott,et al.  Surface Finite Elements for Parabolic Equations , 2007 .

[28]  Colin B. Macdonald,et al.  The Implicit Closest Point Method for the Numerical Solution of Partial Differential Equations on Surfaces , 2009, SIAM J. Sci. Comput..

[29]  Jos Stam,et al.  Flows on surfaces of arbitrary topology , 2003, ACM Trans. Graph..

[30]  Ying He,et al.  Adapted unstructured LBM for flow simulation on curved surfaces , 2005, SCA '05.

[31]  Jakob Andreas Bærentzen,et al.  3D distance fields: a survey of techniques and applications , 2006, IEEE Transactions on Visualization and Computer Graphics.

[32]  Szymon Rusinkiewicz,et al.  Estimating the Laplace‐Beltrami Operator by Restricting 3D Functions , 2009, Comput. Graph. Forum.

[33]  Jos Stam,et al.  Stable fluids , 1999, SIGGRAPH.

[34]  Mark J. Harris CUDA: performance tips and tricks , 2007, SIGGRAPH '07.

[35]  Ross T. Whitaker,et al.  Finite Element Methods on Very Large, Dynamic Tubular Grid Encoded Implicit Surfaces , 2009, SIAM J. Sci. Comput..

[36]  Hans-Peter Seidel,et al.  Fast parallel surface and solid voxelization on GPUs , 2010, SIGGRAPH 2010.

[37]  Rüdiger Westermann,et al.  Linear algebra operators for GPU implementation of numerical algorithms , 2003, SIGGRAPH Courses.

[38]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[39]  Chi-Wing Fu,et al.  Interactive Reaction-Diffusion on Surface Tiles , 2007 .

[40]  Yi Hong,et al.  Geometry-based control of fire simulation , 2010, The Visual Computer.

[41]  Li-Tien Cheng,et al.  Variational Problems and Partial Differential Equations on Implicit Surfaces: The Framework and Exam , 2000 .

[42]  Niklas Peinecke,et al.  Laplace-Beltrami spectra as 'Shape-DNA' of surfaces and solids , 2006, Comput. Aided Des..

[43]  Steven J. Ruuth,et al.  A simple embedding method for solving partial differential equations on surfaces , 2008, J. Comput. Phys..

[44]  Yizhou Yu,et al.  Inviscid and incompressible fluid simulation on triangle meshes: Research Articles , 2004 .