Parameter extraction of photovoltaic cell and module: Analysis and discussion of various combinations and test cases

Abstract A reliable model for photovoltaic (PV) cell/panel is of great interest; it helps to simulate and better understand the behavior of PV systems. Consequently, better control and optimization of the system can be achieved. The most used models of PV cell/panel in literature are the one-diode (ODM) and double-diode (DDM) models. Their accuracy strongly depends on their parameters which must be obtained carefully. Optimization-based approaches are widely adopted for this purpose. In this context, this paper presents two main references studies: The first one focuses on optimization methods and their three basic elements: model, objective function and algorithm. The study highlights the improvement that can be made to the accuracy of the final I-V curve and to the CPU-time required for the extraction by choosing the right combination of the three elements. This is done through the analysis of more than 50 results obtained by different combinations of algorithms, objective functions and models applied to benchmark PV cells and panels widely used in literature. The best combinations are identified and recommended. The second is a detailed comparison and classification of 47 I-V curve estimation methods based on three different approaches: optimization techniques, analytical methods and explicit models of PV cells/panels.

[1]  Mikhail Sorin,et al.  Explicit model of photovoltaic panels to determine voltages and currents at the maximum power point , 2011 .

[2]  Rustu Eke,et al.  A new method to simulate photovoltaic performance of crystalline silicon photovoltaic modules based on datasheet values , 2017 .

[3]  Donatien Njomo,et al.  Modelling and Simulation of photovoltaic module considering single-diode equivalent circuit model in MATLAB , 2013 .

[4]  Efstratios I. Batzelis,et al.  A Method for the Analytical Extraction of the Single-Diode PV Model Parameters , 2016, IEEE Transactions on Sustainable Energy.

[5]  Yong Wang,et al.  Parameter estimation of photovoltaic modules using a hybrid flower pollination algorithm , 2017 .

[6]  Diego Oliva,et al.  Parameter estimation of photovoltaic cells using an improved chaotic whale optimization algorithm , 2017 .

[7]  Jae Hyun Kim,et al.  Extraction of diode parameters of silicon solar cells under high illumination conditions , 2013 .

[8]  Mehmet Akbaba,et al.  A new model for I–V characteristic of solar cell generators and its applications , 1995 .

[9]  Jing Liang,et al.  Multiple learning backtracking search algorithm for estimating parameters of photovoltaic models , 2018, Applied Energy.

[10]  Andrew Lewis,et al.  Grey Wolf Optimizer , 2014, Adv. Eng. Softw..

[11]  Ding Kun,et al.  A simplified model for photovoltaic modules based on improved translation equations , 2014 .

[12]  Yehea Ismail,et al.  Fast and accurate PV model for SPICE simulation , 2018, Journal of Computational Electronics.

[13]  Robert M Corless,et al.  Some applications of the Lambert W  function to physics , 2000, Canadian Journal of Physics.

[14]  Lijun Wu,et al.  Parameter extraction of photovoltaic models from measured I-V characteristics curves using a hybrid trust-region reflective algorithm , 2018, Applied Energy.

[15]  A. Rezaee Jordehi,et al.  Parameter estimation of solar photovoltaic (PV) cells: A review , 2016 .

[16]  A. Kapoor,et al.  Exact analytical solutions of the parameters of real solar cells using Lambert W-function , 2004 .

[17]  Xu Chen,et al.  An opposition-based sine cosine approach with local search for parameter estimation of photovoltaic models , 2019, Energy Conversion and Management.

[18]  Min-Yuan Cheng,et al.  Symbiotic Organisms Search: A new metaheuristic optimization algorithm , 2014 .

[19]  Nasrudin Abd Rahim,et al.  Solar cell parameters identification using hybrid Nelder-Mead and modified particle swarm optimization , 2016 .

[20]  Heng Wang,et al.  Parameter extraction of solar cell models using improved shuffled complex evolution algorithm , 2018, Energy Conversion and Management.

[21]  Xiangyun Qing,et al.  A Simple Parameter Estimation Approach to Modeling of Photovoltaic Modules Based on Datasheet Values , 2016 .

[22]  Shuxian Lun,et al.  A new explicit double-diode modeling method based on Lambert W-function for photovoltaic arrays , 2015 .

[23]  Xu Chen,et al.  A performance-guided JAYA algorithm for parameters identification of photovoltaic cell and module , 2019, Applied Energy.

[24]  Javier Cubas,et al.  On the analytical approach for modeling photovoltaic systems behavior , 2014 .

[25]  A. Das An explicit J–V model of a solar cell for simple fill factor calculation , 2011 .

[26]  Yue Hao,et al.  A simple and efficient solar cell parameter extraction method from a single current-voltage curve , 2011 .

[27]  Xu Chen,et al.  Parameters identification of photovoltaic models using an improved JAYA optimization algorithm , 2017 .

[28]  Marco Mussetta,et al.  Analytical optimization of photovoltaic output with Lagrange Multiplier Method , 2019 .

[29]  Kashif Ishaque,et al.  Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review , 2015 .

[30]  M. Wolf,et al.  Investigation of the double exponential in the current—Voltage characteristics of silicon solar cells , 1977, IEEE Transactions on Electron Devices.

[31]  A. Massi Pavan,et al.  Explicit empirical model for general photovoltaic devices: Experimental validation at maximum power point , 2014 .

[32]  Wenxiang Zhao,et al.  Parameters identification of solar cell models using generalized oppositional teaching learning based optimization , 2016 .

[33]  N. Boutana,et al.  An explicit I-V model for photovoltaic module technologies , 2017 .

[34]  Javier Cubas,et al.  Simple mathematical approach to solar cell/panel behavior based on datasheet information , 2017 .

[35]  Liang Gao,et al.  Parameter extraction of photovoltaic models using an improved teaching-learning-based optimization , 2019, Energy Conversion and Management.

[36]  Vineet Kumar,et al.  PV cell and module efficient parameters estimation using Evaporation Rate based Water Cycle Algorithm , 2017, Swarm Evol. Comput..

[37]  Xin Wang,et al.  Parameters identification of photovoltaic models using self-adaptive teaching-learning-based optimization , 2017 .

[38]  D. Kler,et al.  A novel approach to parameter estimation of photovoltaic systems using hybridized optimizer , 2019, Energy Conversion and Management.

[39]  Zhicong Chen,et al.  Parameters extraction of solar cell models using a modified simplified swarm optimization algorithm , 2017 .

[40]  Sílvio Mariano,et al.  A new high performance method for determining the parameters of PV cells and modules based on guaranteed convergence particle swarm optimization , 2018 .

[41]  Viorel Badescu,et al.  A simple but accurate procedure for solving the five-parameter model , 2015 .

[42]  Efstratios I. Batzelis,et al.  Direct MPP Calculation in Terms of the Single-Diode PV Model Parameters , 2015, IEEE Transactions on Energy Conversion.

[43]  Xu Chen,et al.  Hybridizing cuckoo search algorithm with biogeography-based optimization for estimating photovoltaic model parameters , 2019, Solar Energy.

[44]  Xu Chen,et al.  Perturbed stochastic fractal search for solar PV parameter estimation , 2019 .

[45]  Ming Xu,et al.  A new hybrid algorithm based on grey wolf optimizer and cuckoo search for parameter extraction of solar photovoltaic models , 2020, Energy Conversion and Management.

[46]  Sudip Mandal,et al.  Modeling of photovoltaic systems using Modified Elephant Swarm Water Search Algorithm , 2020, International Journal of Modelling and Simulation.

[47]  Hassan Fathabadi,et al.  Novel neural-analytical method for determining silicon/plastic solar cells and modules characteristics , 2013 .

[48]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[49]  M. Niwano,et al.  An extensively valid and stable method for derivation of all parameters of a solar cell from a single current-voltage characteristic , 2008 .

[50]  A. Das An explicit J–V model of a solar cell using equivalent rational function form for simple estimation of maximum power point voltage , 2013 .

[51]  Ole-Morten Midtgard,et al.  A new analytical solar cell I—V curve model , 2011 .

[52]  Lei Guo,et al.  Parameter identification and sensitivity analysis of solar cell models with cat swarm optimization algorithm , 2016 .

[53]  Jing Zhang,et al.  Winner-leading competitive swarm optimizer with dynamic Gaussian mutation for parameter extraction of solar photovoltaic models , 2020 .

[54]  B. N. Brahmi,et al.  New Method of Parameters Extraction of the Solar Panels , 2018 .

[55]  Amir Mohammad Beigi,et al.  Parameter identification for solar cells and module using a Hybrid Firefly and Pattern Search Algorithms , 2018, Solar Energy.

[56]  F. Javier Toledo,et al.  Two-Step Linear Least-Squares Method For Photovoltaic Single-Diode Model Parameters Extraction , 2018, IEEE Transactions on Industrial Electronics.

[57]  Lijun Wu,et al.  Parameters identification of photovoltaic models using hybrid adaptive Nelder-Mead simplex algorithm based on eagle strategy , 2016 .

[58]  Hui Du,et al.  A Linear Identification of Diode Models from Single I-V Characteristics of PV Panels , 2015, IEEE Trans. Ind. Electron..

[59]  Marcelo Gradella Villalva,et al.  Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays , 2009, IEEE Transactions on Power Electronics.