Modular Robot Systems

We have presented a detailed retrospective on modular robots and discussed connections between modular robots and programmable matter. This field has seen a great deal of creativity and innovation at the level of designing physical systems capable of matching shape to function and algorithms that achieve this capability. The success of these projects rests on the convergence of innovation in hardware design and materials for creating the basic building blocks, information distribution for programming the interaction between the blocks, and control. Most current systems have dimensions on the order of centimeters, yet pack computation, communication, sensing, and power transfer capabilities into their form factors. Additionally, these modules operate using distributed algorithms that use a modules ability to observe its current neighborhood and local rules to decide what to do next.

[1]  Mark Yim,et al.  Towards robotic self-reassembly after explosion , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[2]  Ieee Robotics,et al.  IEEE robotics & automation magazine , 1994 .

[3]  Chih-Han Yu,et al.  Morpho: A self-deformable modular robot inspired by cellular structure , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[4]  H. Kurokawa,et al.  Self-assembling machine , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[5]  Mark Yim,et al.  New locomotion gaits , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[6]  W. McCarthy Programmable matter , 2000, Nature.

[7]  A. Castano,et al.  The Conro modules for reconfigurable robots , 2002 .

[8]  Hod Lipson,et al.  Evolutionary Design and Assembly Planning for Stochastic Modular Robots , 2011 .

[9]  Arthur C. Sanderson,et al.  Tetrobot: a modular system for hyper-redundant parallel robotics , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[10]  Mark Moll,et al.  SUPERBOT: A Deployable, Multi-Functional, and Modular Self-Reconfigurable Robotic System , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[11]  Eric Klavins,et al.  The statistical dynamics of programmed self-assembly , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[12]  Gregory S. Chirikjian,et al.  Modular Self-Reconfigurable Robot Systems [Grand Challenges of Robotics] , 2007, IEEE Robotics & Automation Magazine.

[13]  Daniela Rus,et al.  Algorithms for self-reconfiguring molecule motion planning , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[14]  Gregory S. Chirikjian,et al.  Modular Robot Motion Planning Using Similarity Metrics , 2001, Auton. Robots.

[15]  Daniela Rus,et al.  Robot pebbles: One centimeter modules for programmable matter through self-disassembly , 2010, 2010 IEEE International Conference on Robotics and Automation.

[16]  Ying Zhang,et al.  Connecting and disconnecting for chain self-reconfiguration with PolyBot , 2002 .

[17]  John Perry,et al.  I. Transformers , 1892, Proceedings of the Royal Society of London.

[18]  Toshio Fukuda,et al.  Dynamically reconfigurable robotic system , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[19]  Wei-Min Shen,et al.  Docking in self-reconfigurable robots , 2001, Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.01CH37180).

[20]  A.J. Ijspeert,et al.  Online optimization of modular robot locomotion , 2005, IEEE International Conference Mechatronics and Automation, 2005.

[21]  Hong Zhang,et al.  Combinatorial Optimization of Sensing for Rule-Based Planar Distributed Assembly , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[22]  Daniela Rus,et al.  Miche: Modular Shape Formation by Self-Dissasembly , 2007, ICRA.

[23]  Nancy M. Amato,et al.  Algorithms for fast concurrent reconfiguration of hexagonal metamorphic robots , 2005, IEEE Transactions on Robotics.

[24]  Kenji Suzuki,et al.  A self-repairing structure for modules and its control by vibrating actuation mechanisms , 2009, 2009 IEEE International Conference on Robotics and Automation.

[25]  Hod Lipson,et al.  Shape-Shifting Materials for Programmable Structures , 2009 .

[26]  M. Buss,et al.  Self Organizing Robots Based on Cell Structures - CKBOT , 2002, IEEE International Workshop on Intelligent Robots.

[27]  Marsette Vona,et al.  A basis for self-reconfiguring robots using crystal modules , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[28]  Eric Klavins,et al.  Programmable parts: a demonstration of the grammatical approach to self-organization , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[29]  Saul Griffith,et al.  Robotics: Self-replication from random parts , 2005, Nature.

[30]  Mark Yim,et al.  PolyBot: a modular reconfigurable robot , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[31]  George M. Whitesides,et al.  Beyond molecules: Self-assembly of mesoscopic and macroscopic components , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Eiichi Yoshida,et al.  A Hardware Prototype Self-Reconfigurable Modular Microrobot that Uses Shape Memory Alloy , 2002 .

[33]  Gregory S. Chirikjian,et al.  Evaluating efficiency of self-reconfiguration in a class of modular robots , 1996, J. Field Robotics.

[34]  K. Tomita,et al.  Get Back in Shape ! A Hardware Prototype Self-Reconfigurable Modular Microrobot that Uses Shape Memory Alloy , 2001 .

[35]  Andres Castano,et al.  Mechanical design of a module for reconfigurable robots , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[36]  Henrik Hautop Lund,et al.  Evolving control for modular robotic units , 2003, Proceedings 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation. Computational Intelligence in Robotics and Automation for the New Millennium (Cat. No.03EX694).

[37]  Hod Lipson,et al.  Evolved and Designed Self-Reproducing Modular Robotics , 2007, IEEE Transactions on Robotics.

[38]  Eiichi Yoshida,et al.  M-TRAN: self-reconfigurable modular robotic system , 2002 .

[39]  David Johan Christensen,et al.  A new meta-module for controlling large sheets of ATRON modules , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[40]  Craig D. McGray,et al.  The self-reconfiguring robotic molecule , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[41]  Pradeep K. Khosla,et al.  A hierarchical motion planning strategy for a uniform self-reconfigurable modular robotic system , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[42]  H. Kurokawa,et al.  Automatic locomotion design and experiments for a Modular robotic system , 2005, IEEE/ASME Transactions on Mechatronics.

[43]  Eiichi Yoshida,et al.  A 3-D self-reconfigurable structure and experiments , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[44]  Satoshi Murata,et al.  Docking Experiments of a Modular Robot by Visual Feedback , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[45]  Eiichi Yoshida,et al.  Get back in shape! [SMA self-reconfigurable microrobots] , 2002, IEEE Robotics Autom. Mag..

[46]  Zack J. Butler,et al.  Distributed Planning and Control for Modular Robots with Unit-Compressible Modules , 2003, Int. J. Robotics Res..

[47]  Cine General,et al.  Star Trek: Deep Space Nine , 2010 .

[48]  Pradeep K. Khosla,et al.  Mechatronic design of a modular self-reconfiguring robotic system , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[49]  Iuliu Vasilescu,et al.  Miche: Modular Shape Formation by Self-Disassembly , 2008, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[50]  Gregory S. Chirikjian,et al.  Kinematics of a metamorphic robotic system , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[51]  Hod Lipson,et al.  Stochastic self-reconfigurable cellular robotics , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[52]  Maja J. Mataric,et al.  From local to global behavior in intelligent self-assembly , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[53]  Zack J. Butler,et al.  Million Module March: Scalable Locomotion for Large Self-Reconfiguring Robots , 2008, Int. J. Robotics Res..

[54]  Michihiko KOSEKI,et al.  Cellular Robots Forming a Mechanical Structure , 2004, DARS.

[55]  Gregory S. Chirikjian,et al.  Useful metrics for modular robot motion planning , 1997, IEEE Trans. Robotics Autom..

[56]  Masahiro Shimizu,et al.  A Development of a Modular Robot That Enables Adaptive Reconfiguration , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[57]  Shigeo Hirose,et al.  SMC Rover: Planetary Rover with Transformable Wheels , 2002, ISER.

[58]  Ming-Yang Kao,et al.  Complexities for generalized models of self-assembly , 2004, SODA '04.

[59]  Raffaello D'Andrea,et al.  The Distributed Flight Array , 2010, 2010 IEEE International Conference on Robotics and Automation.

[60]  Eiichi Yoshida,et al.  Distributed formation control for a modular mechanical system , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.

[61]  Shuhei Miyashita,et al.  How morphology affects self-assembly in a stochastic modular robot , 2008, 2008 IEEE International Conference on Robotics and Automation.

[62]  Erik Winfree,et al.  The program-size complexity of self-assembled squares (extended abstract) , 2000, STOC '00.

[63]  Henrik Gordon Petersen,et al.  Representation and shape estimation of Odin, a parallel under-actuated modular robot , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[64]  Marsette Vona,et al.  Crystalline Robots: Self-Reconfiguration with Compressible Unit Modules , 2001, Auton. Robots.

[65]  B.R. Donald,et al.  An untethered, electrostatic, globally controllable MEMS micro-robot , 2006, Journal of Microelectromechanical Systems.

[66]  Ashish Goel,et al.  Running time and program size for self-assembled squares , 2001, STOC '01.

[67]  Justin Werfel,et al.  Anthills built to order: automating construction with artificial swarms , 2006 .

[68]  Mark Yim,et al.  Telecubes: mechanical design of a module for self-reconfigurable robotics , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[69]  Mark Moll,et al.  Modular Self-reconfigurable Robot Systems: Challenges and Opportunities for the Future , 2007 .

[70]  Hod Lipson,et al.  Three Dimensional Stochastic Reconfiguration of Modular Robots , 2005, Robotics: Science and Systems.

[71]  David Johan Christensen,et al.  Selecting a meta-module to shape-change the ATRON self-reconfigurable robot , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[72]  Henrik Hautop Lund,et al.  Modular ATRON: modules for a self-reconfigurable robot , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[73]  Seth Copen Goldstein,et al.  Claytronics: An Instance of Programmable Matter , 2004 .

[74]  Seth Copen Goldstein,et al.  Stress-driven MEMS assembly + electrostatic forces = 1mm diameter robot , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[75]  B.R. Donald,et al.  Planar Microassembly by Parallel Actuation of MEMS Microrobots , 2008, Journal of Microelectromechanical Systems.

[76]  Masahiro Shimizu,et al.  A modular robot that exploits a spontaneous connectivity control mechanism , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[77]  Isao Shimoyama,et al.  Dynamics of Self-Assembling Systems: Analogy with Chemical Kinetics , 1994, Artificial Life.

[78]  H. Kurokawa,et al.  Distributed self-reconfiguration control of modular robot M-TRAN , 2005, IEEE International Conference Mechatronics and Automation, 2005.

[79]  Mark Yim,et al.  Dynamic Rolling for a Modular Loop Robot , 2006, ISER.

[80]  Tien,et al.  Forming electrical networks in three dimensions by self-assembly , 2000, Science.

[81]  Zack J. Butler,et al.  Scalable Locomotion for Large Self-Reconfiguring Robots , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[82]  Byoung Kwon An Em-cube: cube-shaped, self-reconfigurable robots sliding on structure surfaces , 2008, 2008 IEEE International Conference on Robotics and Automation.

[83]  Ricardo Franco Mendoza Garcia,et al.  Mechanical design of odin, an extendable heterogeneous deformable modular robot , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[84]  G. Whitesides,et al.  Self-Assembly at All Scales , 2002, Science.

[85]  Hajime Asama,et al.  Self-organizing collective robots with morphogenesis in a vertical plane , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).