Material Properties of Poly(Propylene Carbonates)

Abstract The material properties of poly(propylene carbonate) (PPC) are discussed with respect to thermal features, viscoelastic and mechanical properties, processability, characteristics in solution, biodegradability, and biocompatibility. Thermal decomposition proceeds in two steps: (1) backbiting at temperatures as low as 150°C in the presence of catalyst residues, giving cyclic propylene carbonate; and (2) chain scission at temperatures over 200°C with possible involvement of initial hydrolysis. PPC shows one thermal transition at a glass temperature of around 40°C. PPC is a pseudoplastic material, and a master curve constructed for frequency-dependent viscosity shows no real plateau for material of number-average molecular weight (Mn) < 50 kDa. At temperatures in the range of the glass transition, the apparent activation energy for flow changes rapidly from 500 kJ/mol to about 40 kJ/mol. The viscosity of PPC has an activation energy in the range of 5–25 kJ/mol (Mn < 50 kDa). The modulus of elasticity (around 800 MPa) and yield strength (10–20 MPa) are reminiscent of low-density polyethylene. PPC has a large elongation at break, and may be useful for the preparation of composites and blends. Biodegradation of PPC is dominated by hydrolysis, which can be accelerated by Lewis acid catalyst residues. Biocompatibility is excellent in the sense that it does not induce an inflammatory reaction in tissue.

[1]  Xue Li,et al.  Fabrication and properties of poly(propylene carbonate)/calcium carbonate composites , 2003 .

[2]  Y. Meng,et al.  ZnGA–MMT catalyzed the copolymerization of carbon dioxide with propylene oxide , 2005 .

[3]  Fosong Wang,et al.  Synthesis and properties of carbon dioxide: Epoxides copolymers from rare earth metal catalyst , 2003 .

[4]  Fosong Wang,et al.  Improving thermal stability of biodegradable aliphatic polycarbonate by metal ion coordination , 2009 .

[5]  D. Darensbourg,et al.  Solid-state structures of zinc(II) benzoate complexes. Catalyst precursors for the coupling of carbon dioxide and epoxides. , 2002, Inorganic chemistry.

[6]  Ke‐long Huang,et al.  Synthesis and characteristics of a novel aliphatic polycarbonate, poly[(propylene oxide)-co-(carbon dioxide)-co-(γ-butyrolactone)] , 2005 .

[7]  Xianhong Wang,et al.  FTIR study of poly(propylene carbonate)/bisphenol A blends , 2004 .

[8]  G. Luinstra Poly(Propylene Carbonate), Old Copolymers of Propylene Oxide and Carbon Dioxide with New Interests: Catalysis and Material Properties , 2008 .

[9]  W. Fosong End-capping and Thermal Degradation of Poly(propylene carbonate) with Different Molecular Weight , 2007 .

[10]  Hideomi Koinuma,et al.  Copolymerization of carbon dioxide and epoxide , 1969 .

[11]  Yi Wang,et al.  Highly active, binary catalyst systems for the alternating copolymerization of CO2 and epoxides under mild conditions. , 2004, Angewandte Chemie.

[12]  M. Xiao,et al.  Thermally stable aliphatic polycarbonate containing bulky carbazole pendants , 2008 .

[13]  Y. Yoshida,et al.  Enzyme-catalyzed degradation of aliphatic polycarbonates prepared from epoxides and carbon dioxide , 1999 .

[14]  Chung-Sung Tan,et al.  Block Copolymerization of Carbon Dioxide with Butylene Oxide, Propylene Oxide and 4-Vinyl-1-Cyclohexene-1,2-Epoxide in Based Poly(Cyclohexene Carbonate) , 2003 .

[15]  G. Coates,et al.  Two-dimensional double metal cyanide complexes: highly active catalysts for the homopolymerization of propylene oxide and copolymerization of propylene oxide and carbon dioxide. , 2006, Dalton transactions.

[16]  Chung-Sung Tan,et al.  Block copolymerization of carbon dioxide with cyclohexene oxide and 4-vinyl-1-cyclohexene-1,2-epoxide in based poly(propylene carbonate) by yttrium–metal coordination catalyst , 2002 .

[17]  Ouyang Shixi,et al.  マイクロ加工におけるMEMSの3D構造に対するBN-303フォトレジストの仮硬化(Soft-baking)の効果 , 2007 .

[18]  D. Darensbourg,et al.  Making plastics from carbon dioxide: salen metal complexes as catalysts for the production of polycarbonates from epoxides and CO2. , 2007, Chemical reviews.

[19]  D. Darensbourg,et al.  Catalytic Activity of Zinc(II) Phenoxides Which Possess Readily Accessible Coordination Sites. Copolymerization and Terpolymerization of Epoxides and Carbon Dioxide , 1995 .

[20]  R. Li,et al.  Essential work of fracture analysis of poly(propylene carbonate) with varying molecular weight , 2005 .

[21]  C. Barner‐Kowollik,et al.  Mark–Houwink Parameters for the Universal Calibration of Acrylate, Methacrylate and Vinyl Acetate Polymers Determined by Online Size‐Exclusion Chromatography—Mass Spectrometry , 2010 .

[22]  Rong Zhang,et al.  Asymmetric Alternating Copolymerization and Terpolymerization of Epoxides with Carbon Dioxide at Mild Conditions , 2006 .

[23]  David R. Moore,et al.  Discrete metal-based catalysts for the copolymerization of CO2 and epoxides: discovery, reactivity, optimization, and mechanism. , 2004, Angewandte Chemie.

[24]  S. Tjong,et al.  Synthesis and characterization of alternating copolymer from carbon dioxide and propylene oxide , 2002 .

[25]  Yongjin Li,et al.  Compatibilization by homopolymer: significant improvements in the modulus and tensile strength of PPC/PMMA blends by the addition of a small amount of PVAc. , 2009, ACS applied materials & interfaces.

[26]  F. Bovey,et al.  Macromolecules: An Introduction to Polymer Science , 1982 .

[27]  P. Gorecki,et al.  Degradation and depolymerization of poly(propylene carbonate) by diethylzinc , 1983 .

[28]  M. Nakano,et al.  Examination of biodegradability of poly(ethylene carbonate) and poly(propylene carbonate) in the peritoneal cavity in rats. , 1983, Chemical & pharmaceutical bulletin.

[29]  D. Darensbourg,et al.  Bis 2,6-difluorophenoxide Dimeric Complexes of Zinc and Cadmium and Their Phosphine Adducts: Lessons Learned Relative to Carbon Dioxide/Cyclohexene Oxide Alternating Copolymerization Processes Catalyzed by Zinc Phenoxides , 2000 .

[30]  K. Wulf Fließverhalten von Stoffen und Stoffgemischen. Hg. von W.‐M. KULICKE. ISBN 3‐85738‐115‐4. Basel/Heidelberg/New York: Hüthig und Wepf Verlag 1986. 487 S., geb. DM 168,– , 1987 .

[31]  Y. Meng,et al.  Mechanic properties and thermal degradation kinetics of terpolymer poly(propylene cyclohexene carbonate)s , 2008 .

[32]  Fosong Wang,et al.  Electron-beam irradiation on poly(propylene carbonate) in the presence of polyfunctional monomers , 2007 .

[33]  Zhang Hongfang,et al.  Miscibility and hydrogen-bonding interactions in blends of carbon dioxide/epoxy propane copolymer with poly(p-vinylphenol) , 2002 .

[34]  S. Tjong,et al.  Thermally stable and high molecular weight poly(propylene carbonate)s from carbon dioxide and propylene oxide , 2002 .

[35]  S. Tjong,et al.  Synthesis and degradation behavior of poly(propylene carbonate) derived from carbon dioxide and propylene oxide , 2004 .

[36]  M. E. Ford,et al.  Thermal stabilization of poly(alkylene carbonate)s , 1980 .

[37]  S. Tjong,et al.  Melt processable and biodegradable aliphatic polycarbonate derived from carbon dioxide and propylene oxide , 2003 .

[38]  J. Jung,et al.  Acid- and base-catalyzed hydrolyses of aliphatic polycarbonates and polyesters , 2006 .

[39]  K. Soga,et al.  Alternating Copolymerization of CO2 and Propylene Oxide with the Catalysts Prepared from Zn(OH)2 and Various Dicarboxylic Acids , 1981 .

[40]  R. Li,et al.  Thermal properties and rheological behavior of biodegradable aliphatic polycarbonate derived from carbon dioxide and propylene oxide , 2004 .

[41]  Quan Zhu,et al.  Structural characterization and thermal and mechanical properties of poly(propylene carbonate)/MgAl-LDH exfoliation nanocomposite via solution intercalation , 2006 .

[42]  D. Navarro-Llobet,et al.  Poly(propylene carbonate). 1. More about Poly(propylene carbonate) Formed from the Copolymerization of Propylene Oxide and Carbon Dioxide Employing a Zinc Glutarate Catalyst , 2002 .

[43]  I. Kim,et al.  Biological affinity and biodegradability of poly(propylene carbonate) prepared from copolymerization of carbon dioxide with propylene oxide , 2008 .

[44]  Min Zhang,et al.  Degradation and Stabilization of Poly(propylene carbonate) , 2002 .

[45]  M. Xiao,et al.  Thermally stable poly(propylene carbonate) synthesized by copolymerizing with bulky naphthalene containing monomer , 2008 .

[46]  S. Tjong,et al.  Thermal decomposition characteristics of poly(propylene carbonate) using TG/IR and PY-GC/MS techniques , 2003 .

[47]  P. J. Phillips,et al.  Physical properties of aliphatic polycarbonates made from CO2 and epoxides , 2003 .

[48]  P. Chang,et al.  Preparation and properties of biodegradable poly(propylene carbonate)/thermoplastic dried starch composites , 2008 .

[49]  J. Varghese,et al.  Immortal CO2/Propylene Oxide Copolymerization: Precise Control of Molecular Weight and Architecture of Various Block Copolymers , 2010 .

[50]  Jin Wang,et al.  Copolymerization of carbon dioxide and propylene oxide using zinc adipate as catalyst , 2006 .

[51]  H. Kim,et al.  New mechanistic insight into the coupling reactions of CO2 and epoxides in the presence of zinc complexes. , 2003, Chemistry.

[52]  J. J. Liu,et al.  Thermal and dynamic mechanical properties of poly(propylene carbonate) , 2005 .

[53]  M. Xiao,et al.  Fabrication and properties of degradable PPC/EVOH/starch/CaCO3 composites , 2008 .

[54]  Zhang Hongfang,et al.  Crystallization and Melting Behaviors of PPC-BS/PVA Blends , 2003 .

[55]  Hong Wu,et al.  Synthesis, characterization and hydrolysis of an aliphatic polycarbonate by terpolymerization of carbon dioxide, propylene oxide and maleic anhydride , 2006 .

[56]  J. Jung,et al.  Terpolymerization of CO2 with Propylene Oxide and ε-Caprolactone Using Zinc Glutarate Catalyst , 2003 .

[57]  W. Jintao Preparation and Characterization of Zinc Adipate and Its Catalytic Activity for the Copolymerization between CO2 and Propylene Oxide , 2009 .

[58]  H. Nagahara,et al.  Development of a new advanced process for manufacturing polyacetal resins. Part III. End-capping during polymerization for manufacturing acetal homopolymer and copolymer , 1993 .

[59]  Meng Yue-zhong Synthesis and Properties of Terpolymers Derived from Carbon Dioxide,Propylene Oxide and Phthalic Anhydride , 2009 .

[60]  M. Xiao,et al.  Mechanical, Thermal, and Morphological Properties of Glass Fiber-reinforced Biodegradable Poly(propylene carbonate) Composites: , 2010 .

[61]  Fosong Wang,et al.  Double propagation based on diepoxide, a facile route to high molecular weight poly(propylene carbonate) , 2006 .

[62]  J. Varghese,et al.  Thermal and weathering degradation of poly(propylene carbonate) , 2010 .

[63]  Yugang Zhuang,et al.  Thermal degradation kinetics of uncapped and end-capped poly(propylene carbonate) , 2003 .

[64]  R. Landel,et al.  The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquids , 1955 .

[65]  Hao Pang,et al.  Studies on the blends of CO2 copolymer. IV. Natural rubber/poly(propylene carbonate) systems , 2002 .