Improving dynamic susceptibility contrast MRI measurement of quantitative cerebral blood flow using corrections for partial volume and nonlinear contrast relaxivity: A xenon computed tomographic comparative study

To test whether dynamic susceptibility contrast MRI‐based CBF measurements are improved with arterial input function (AIF) partial volume (PV) and nonlinear contrast relaxivity correction, using a gold‐standard CBF method, xenon computed tomography (xeCT).

[1]  David Gur,et al.  In vivo mapping of local cerebral blood flow by xenon-enhanced computed tomography. , 1982, Science.

[2]  N. Lassen,et al.  Cerebral Transit of an Intravascular Tracer May Allow Measurement of Regional Blood Volume but Not Regional Blood Flow , 1984, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[3]  Regional Cerebral Blood Flow Measurements Using Stable Xenon Enhanced Computed Tomography: A Theoretical and Experimental Evaluation , 1984, Journal of computer assisted tomography.

[4]  D Gur,et al.  Stable xenon CT cerebral blood flow imaging: rationale for and role in clinical decision making. , 1991, AJNR. American journal of neuroradiology.

[5]  J. R. Boston,et al.  Local Cerebral Blood Flow Measured by Xenon-Enhanced CT during Cryogenic Brain Edema and Intracranial Hypertension in Monkeys , 1993, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[6]  W. J. Lorenz,et al.  Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. , 1994, Radiology.

[7]  B. Rosen,et al.  High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis , 1996, Magnetic resonance in medicine.

[8]  P. Johannsen,et al.  Cerebral Blood Flow Measurements by Magnetic Resonance Imaging Bolus Tracking: Comparison with [15O]H2O Positron Emission Tomography in Humans , 1998, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[9]  H. Batjer Qualitative Versus Quantitative Assessment of Cerebrovascular Reserves , 1998 .

[10]  A. Gjedde,et al.  Absolute Cerebral Blood Flow and Blood Volume Measured by Magnetic Resonance Imaging Bolus Tracking: Comparison with Positron Emission Tomography Values , 1998, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[11]  M. Viergever,et al.  Measurement of cerebral perfusion with dual-echo multi-slice quantitative dynamic susceptibility contrast MRI. , 1999, Journal of magnetic resonance imaging : JMRI.

[12]  U Piepgras,et al.  Correlation of regional cerebral blood flow measured by stable xenon CT and perfusion MRI. , 1999, Journal of computer assisted tomography.

[13]  D. Gadian,et al.  Delay and dispersion effects in dynamic susceptibility contrast MRI: Simulations using singular value decomposition , 2000, Magnetic resonance in medicine.

[14]  V. Kiselev On the theoretical basis of perfusion measurements by dynamic susceptibility contrast MRI , 2001, Magnetic resonance in medicine.

[15]  W. Lin,et al.  Quantitative measurements of cerebral blood flow in patients with unilateral carotid artery occlusion: A PET and MR study , 2001, Journal of magnetic resonance imaging : JMRI.

[16]  Timothy J Carroll,et al.  Absolute Quantification of Cerebral Blood Flow with Magnetic Resonance, Reproducibility of the Method, and Comparison with H215O Positron Emission Tomography , 2002, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[17]  Pratik Mukherjee,et al.  Measurement of cerebral blood flow in chronic carotid occlusive disease: comparison of dynamic susceptibility contrast perfusion MR imaging with positron emission tomography. , 2003, AJNR. American journal of neuroradiology.

[18]  M. Viergever,et al.  Measuring the arterial input function with gradient echo sequences , 2003, Magnetic resonance in medicine.

[19]  B. Rosen,et al.  Tracer arrival timing‐insensitive technique for estimating flow in MR perfusion‐weighted imaging using singular value decomposition with a block‐circulant deconvolution matrix , 2003, Magnetic resonance in medicine.

[20]  V. Haughton,et al.  Automatic calculation of the arterial input function for cerebral perfusion imaging with MR imaging. , 2003, Radiology.

[21]  W. Yuh,et al.  Guidelines and recommendations for perfusion imaging in cerebral ischemia: A scientific statement for healthcare professionals by the writing group on perfusion imaging, from the Council on Cardiovascular Radiology of the American Heart Association. , 2003, Stroke.

[22]  Leif Østergaard,et al.  Effects of tracer arrival time on flow estimates in MR perfusion‐weighted imaging , 2003, Magnetic resonance in medicine.

[23]  L. K. Hansen,et al.  Defining a local arterial input function for perfusion MRI using independent component analysis , 2004, Magnetic resonance in medicine.

[24]  Emmanuel L Barbier,et al.  Comparative Overview of Brain Perfusion Imaging Techniques , 2005, Journal of neuroradiology. Journal de neuroradiologie.

[25]  Anne M. Smith,et al.  Absolute CBF and CBV measurements by MRI bolus tracking before and after acetazolamide challenge: Repeatabilily and comparison with PET in humans , 2005, NeuroImage.

[26]  M. Moseley,et al.  Automated method for generating the arterial input function on perfusion-weighted MR imaging: validation in patients with stroke. , 2005, AJNR. American journal of neuroradiology.

[27]  Jeroen van der Grond,et al.  Partial volume effects on arterial input functions: Shape and amplitude distortions and their correction , 2005, Journal of magnetic resonance imaging : JMRI.

[28]  V. Kiselev,et al.  Theoretical model of intravascular paramagnetic tracers effect on tissue relaxation , 2006, Magnetic resonance in medicine.

[29]  Elna-Marie Larsson,et al.  Absolute quantification of cerebral blood flow in normal volunteers: Correlation between Xe‐133 SPECT and dynamic susceptibility contrast MRI , 2007, Journal of magnetic resonance imaging : JMRI.

[30]  Roland Bammer,et al.  Perfusion mapping with multiecho multishot parallel imaging EPI , 2007, Magnetic resonance in medicine.

[31]  Roland Bammer,et al.  Identifying systematic errors in quantitative dynamic‐susceptibility contrast perfusion imaging by high‐resolution multi‐echo parallel EPI , 2007, NMR in biomedicine.

[32]  Fernando Calamante,et al.  Contrast agent concentration measurements affecting quantification of bolus‐tracking perfusion MRI , 2007, Magnetic resonance in medicine.

[33]  Leif Østergaard,et al.  How Reliable Is Perfusion MR in Acute Stroke?: Validation and Determination of the Penumbra Threshold Against Quantitative PET , 2008, Stroke.

[34]  Leif Østergaard,et al.  Analysis of partial volume effects on arterial input functions using gradient echo: A simulation study , 2009, Magnetic resonance in medicine.

[35]  Alan Connelly,et al.  Nonlinear ΔR  *2 effects in perfusion quantification using bolus‐tracking MRI , 2009, Magnetic resonance in medicine.

[36]  M. van Buchem,et al.  Optimal Location for Arterial Input Function Measurements near the Middle Cerebral Artery in First-Pass Perfusion MRI , 2009, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.