A modified Leslie-Gower predator-prey interaction model and parameter identifiability

Abstract In this work, bifurcation and a systematic approach for estimation of identifiable parameters of a modified Leslie–Gower predator-prey system with Crowley–Martin functional response and prey refuge is discussed. Global asymptotic stability is discussed by applying fluctuation lemma. The system undergoes into Hopf bifurcation with respect to parameters intrinsic growth rate of predators (s) and prey reserve (m). The stability of Hopf bifurcation is also discussed by calculating Lyapunov number. The sensitivity analysis of the considered model system with respect to all variables is performed which also supports our theoretical study. To estimate the unknown parameter from the data, an optimization procedure (pseudo-random search algorithm) is adopted. System responses and phase plots for estimated parameters are also compared with true noise free data. It is found that the system dynamics with true set of parametric values is similar to the estimated parametric values. Numerical simulations are presented to substantiate the analytical findings.

[1]  Shigui Ruan,et al.  Global Analysis in a Predator-Prey System with Nonmonotonic Functional Response , 2001, SIAM J. Appl. Math..

[2]  P. H. Leslie A STOCHASTIC MODEL FOR STUDYING THE PROPERTIES OF CERTAIN BIOLOGICAL SYSTEMS BY NUMERICAL METHODS , 1958 .

[3]  Malay Banerjee,et al.  Bifurcation analysis of a ratio-dependent prey-predator model with the Allee effect , 2012 .

[4]  Fengde Chen,et al.  On a Leslie―Gower predator―prey model incorporating a prey refuge , 2009 .

[5]  Shuguang Liu,et al.  Parameter optimization, sensitivity, and uncertainty analysis of an ecosystem model at a forest flux tower site in the United States , 2014 .

[6]  Haiyin Li,et al.  Dynamics of the density dependent predator–prey system with Beddington–DeAngelis functional response , 2011 .

[7]  John Maynard Smith Models in ecology , 1974 .

[8]  Karline Soetaert,et al.  Inverse Modelling, Sensitivity and Monte Carlo Analysis in R Using Package FME , 2010 .

[9]  M. Hassell,et al.  Mutual Interference between Searching Insect Parasites , 1971 .

[10]  R. P. Gupta,et al.  Bifurcation analysis of modified Leslie–Gower predator–prey model with Michaelis–Menten type prey harvesting , 2013 .

[11]  Manoj Thakur,et al.  A density dependent delayed predator-prey model with Beddington-DeAngelis type function response incorporating a prey refuge , 2015, Commun. Nonlinear Sci. Numer. Simul..

[12]  Daqing Jiang,et al.  Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation , 2009 .

[13]  H. I. Freedman,et al.  The trade-off between mutual interference and time lags in predator-prey systems , 1983 .

[14]  H. Künsch,et al.  Practical identifiability analysis of large environmental simulation models , 2001 .

[15]  Wanbiao Ma,et al.  The asymptotic behavior of a Chemostat model with Crowley–Martin type functional response and time delays , 2013, Journal of Mathematical Chemistry.

[16]  M. A. Aziz-Alaoui,et al.  Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type II schemes , 2003, Appl. Math. Lett..

[17]  Jai Prakash Tripathi,et al.  Impact of generalist type sexually reproductive top predator interference on the dynamics of a food chain model , 2017 .

[18]  S. Hsu,et al.  Global analysis of the Michaelis–Menten-type ratio-dependent predator-prey system , 2001, Journal of mathematical biology.

[19]  S. Abbas,et al.  Almost Periodicity of a Modified Leslie–Gower Predator–Prey System with Crowley–Martin Functional Response , 2015 .

[20]  C. S. Holling Some Characteristics of Simple Types of Predation and Parasitism , 1959, The Canadian Entomologist.

[21]  T. K. Kar,et al.  Influence of prey reserve in a prey–predator fishery , 2006 .

[22]  P. H. Leslie SOME FURTHER NOTES ON THE USE OF MATRICES IN POPULATION MATHEMATICS , 1948 .

[23]  Manoj Thakur,et al.  A modified real coded genetic algorithm for constrained optimization , 2014, Appl. Math. Comput..

[24]  H. I. Freedman Deterministic mathematical models in population ecology , 1982 .

[25]  Eric Delhez,et al.  A trust-region method applied to parameter identification of a simple prey–predator model , 2005 .

[26]  Ranjit Kumar Upadhyay,et al.  Dynamics of a three species food chain model with Crowley–Martin type functional response , 2009 .

[27]  Philip H. Crowley,et al.  Functional Responses and Interference within and between Year Classes of a Dragonfly Population , 1989, Journal of the North American Benthological Society.

[28]  Wyn L. Price,et al.  A Controlled Random Search Procedure for Global Optimisation , 1977, Comput. J..

[29]  M. Jazar,et al.  Global dynamics of a modified Leslie-Gower predator-prey model with Crowley-Martin functional responses , 2013 .

[30]  Peeyush Chandra,et al.  A model for fishery resource with reserve area , 2003 .

[31]  Swati Tyagi,et al.  Global analysis of a delayed density dependent predator-prey model with Crowley-Martin functional response , 2016, Commun. Nonlinear Sci. Numer. Simul..

[32]  Alan A. Berryman,et al.  The Orgins and Evolution of Predator‐Prey Theory , 1992 .

[33]  Dongmei Xiao,et al.  Bifurcations of a Ratio-Dependent Predator-Prey System with Constant Rate Harvesting , 2005, SIAM J. Appl. Math..

[34]  P. Vanrolleghem,et al.  Extensions to modeling aerobic carbon degradation using combined respirometric-titrimetric measurements in view of activated sludge model calibration. , 2007, Water research.

[35]  Shigui Ruan,et al.  Bifurcations in a predator–prey system of Leslie type with generalized Holling type III functional response☆ , 2014 .

[36]  Kusum Deep,et al.  A new mutation operator for real coded genetic algorithms , 2007, Appl. Math. Comput..

[37]  P. Reichert,et al.  Biogeochemical model of Lake Zürich : sensitivity, identifiability and uncertainty analysis , 2001 .

[38]  J. F. Gilliam,et al.  FUNCTIONAL RESPONSES WITH PREDATOR INTERFERENCE: VIABLE ALTERNATIVES TO THE HOLLING TYPE II MODEL , 2001 .

[39]  Manoj Thakur,et al.  Dynamical analysis of a prey–predator model with Beddington–DeAngelis type function response incorporating a prey refuge , 2015 .

[40]  Diego Rivera,et al.  Identifiability analysis: towards constrained equifinality and reduced uncertainty in a conceptual model , 2014 .

[41]  Syed Abbas,et al.  Almost periodic solution of a non-autonomous model of phytoplankton allelopathy , 2012 .

[42]  Manoj Thakur,et al.  Stability analysis of two prey one predator model , 2012 .

[43]  Guangquan Li,et al.  Parameter Identifiability and Redundancy: Theoretical Considerations , 2008, PloS one.

[44]  T. K. Kar,et al.  Stability analysis of a prey–predator model incorporating a prey refuge , 2005 .

[45]  Eileen E. Hofmann,et al.  A data assimilation technique applied to a predator-prey model , 1995 .

[46]  B. Dubey,et al.  A Prey-Predator Model with a Reserved Area , 2007 .

[47]  Norbert Hungerbühler,et al.  Existence, uniqueness and stability analysis of allelopathic stimulatory phytoplankton model☆ , 2010 .

[48]  Maurice W. Sabelis,et al.  Spider mites: their biology, natural enemies and control: vol. 1A , 1985 .

[49]  Brais Martínez‐López,et al.  Practical Identifiability Analysis for the Characterization of Mass Transport Properties in Migration Tests , 2015 .

[50]  A. J. Lotka Elements of mathematical biology , 1956 .

[51]  Manoj Thakur,et al.  Local and global stability analysis of a two prey one predator model with help , 2014, Commun. Nonlinear Sci. Numer. Simul..

[52]  Jun Zhou Qualitative analysis of a modified Leslie-Gower predator-prey model with Crowley-Martin functional responses , 2015 .

[53]  Partha Sarathi Mandal,et al.  Stochastic persistence and stationary distribution in a Holling–Tanner type prey–predator model , 2012 .

[54]  Shengqiang Liu,et al.  A Stage-structured Predator-prey Model of Beddington-DeAngelis Type , 2006, SIAM J. Appl. Math..

[55]  Y. Kuang,et al.  Global analyses in some delayed ratio-dependent predator-prey systems , 1998 .

[56]  Matthias Ketzel,et al.  A parameter estimation and identifiability analysis methodology applied to a street canyon air pollution model , 2016, Environ. Model. Softw..

[57]  K. Schmitt,et al.  Permanence and the dynamics of biological systems. , 1992, Mathematical biosciences.

[58]  Li Zhong,et al.  Stability analysis of a prey-predator model with holling type III response function incorporating a prey refuge , 2006, Appl. Math. Comput..