Robust and generic RNA modeling using inferred constraints: a structure for the hepatitis C virus IRES pseudoknot domain.

RNA function is dependent on its structure, yet three-dimensional folds for most biologically important RNAs are unknown. We develop a generic discrete molecular dynamics-based modeling system that uses long-range constraints inferred from diverse biochemical or bioinformatic analyses to create statistically significant (p < 0.01) nativelike folds for RNAs of known structure ranging from 45 to 158 nucleotides. We then predict the unknown structure of the hepatitis C virus internal ribosome entry site (IRES) pseudoknot domain. The resulting RNA model rationalizes independent solvent accessibility and cryo-electron microscopy structure information. The pseudoknot domain positions the AUG start codon near the mRNA channel and is tRNA-like, suggesting the IRES employs molecular mimicry as a functional strategy.

[1]  M. Levitt Detailed Molecular Model for Transfer Ribonucleic Acid , 1969, Nature.

[2]  B. Ganem RNA world , 1987, Nature.

[3]  E Westhof,et al.  Restrained refinement of two crystalline forms of yeast aspartic acid and phenylalanine transfer RNA crystals. , 1987, Acta crystallographica. Section A, Foundations of crystallography.

[4]  T. Cech,et al.  A conserved base pair within helix P4 of the Tetrahymena ribozyme helps to form the tertiary structure required for self‐splicing. , 1989, The EMBO journal.

[5]  L. Ping,et al.  Secondary structure of the 5' nontranslated regions of hepatitis C virus and pestivirus genomic RNAs. , 1992, Nucleic acids research.

[6]  R. Gutell,et al.  Representation of the secondary and tertiary structure of group I introns , 1994, Nature Structural Biology.

[7]  T. Cech,et al.  GAAA tetraloop and conserved bulge stabilize tertiary structure of a group I intron domain. , 1994, Journal of molecular biology.

[8]  S Y Le,et al.  An RNA pseudoknot is an essential structural element of the internal ribosome entry site located within the hepatitis C virus 5' noncoding region. , 1995, RNA.

[9]  C. Kundrot,et al.  Crystal Structure of a Group I Ribozyme Domain: Principles of RNA Packing , 1996, Science.

[10]  M. Honda,et al.  Stability of a stem-loop involving the initiator AUG controls the efficiency of internal initiation of translation on hepatitis C virus RNA. , 1996, RNA.

[11]  S. Beaucage,et al.  Current Protocols in Nucleic Acid Chemistry , 1999 .

[12]  G. Otto,et al.  Structures of two RNA domains essential for hepatitis C virus internal ribosome entry site function , 2000, Nature Structural Biology.

[13]  Nan Yu,et al.  The Comparative RNA Web (CRW) Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs , 2002, BMC Bioinformatics.

[14]  J Frank,et al.  Hepatitis C Virus IRES RNA-Induced Changes in the Conformation of the 40S Ribosomal Subunit , 2001, Science.

[15]  Y. Kanamori,et al.  A tertiary structure model of the internal ribosome entry site (IRES) for methionine-independent initiation of translation. , 2001, RNA.

[16]  Gabriele Varani,et al.  A conserved RNA structure within the HCV IRES eIF3-binding site , 2002, Nature Structural Biology.

[17]  P. Sarnow,et al.  Factorless ribosome assembly on the internal ribosome entry site of cricket paralysis virus. , 2002, Journal of molecular biology.

[18]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[19]  K. Zhou,et al.  Crystal structure of an RNA tertiary domain essential to HCV IRES-mediated translation initiation , 2002, Nature Structural Biology.

[20]  Ricardo Flores,et al.  Peripheral regions of natural hammerhead ribozymes greatly increase their self‐cleavage activity , 2003, The EMBO journal.

[21]  E. Westhof,et al.  Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity , 2003, Nature Structural Biology.

[22]  Joseph D Puglisi,et al.  Structure of HCV IRES domain II determined by NMR , 2003, Nature Structural Biology.

[23]  Anastasia Khvorova,et al.  Fast cleavage kinetics of a natural hammerhead ribozyme. , 2004, Journal of the American Chemical Society.

[24]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[25]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[26]  Holger Stark,et al.  Structure of the hepatitis C virus IRES bound to the human 80S ribosome: remodeling of the HCV IRES. , 2005, Structure.

[27]  W. Scott,et al.  Tertiary Contacts Distant from the Active Site Prime a Ribozyme for Catalysis , 2006, Cell.

[28]  James Biehle Science in Structure , 2006 .

[29]  F. Ding,et al.  Ab initio RNA folding by discrete molecular dynamics: from structure prediction to folding mechanisms. , 2008, RNA.

[30]  J. Kieft,et al.  tRNA–mRNA mimicry drives translation initiation from a viral IRES , 2008, Nature Structural &Molecular Biology.

[31]  Feng Ding,et al.  Native-like RNA tertiary structures using a sequence-encoded cleavage agent and refinement by discrete molecular dynamics. , 2009, Journal of the American Chemical Society.