Low-Rank Dynamic Mode Decomposition: Optimal Solution in Polynomial-Time

This work studies the linear approximation of high-dimensional dynamical systems using low-rank dynamic mode decomposition (DMD). Searching this approximation in a data-driven approach can be formalised as attempting to solve a low-rank constrained optimisation problem. This problem is non-convex and state-of-the-art algorithms are all sub-optimal. This paper shows that there exists a closed-form solution, which can be computed in polynomial-time, and characterises the l2-norm of the optimal approximation error. The theoretical results serve to design low-complexity algorithms building reduced models from the optimal solution, based on singular value decomposition or low-rank DMD. The algorithms are evaluated by numerical simulations using synthetic and physical data benchmarks.

[1]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[2]  K. Willcox,et al.  Data-driven operator inference for nonintrusive projection-based model reduction , 2016 .

[3]  Inderjit S. Dhillon,et al.  Guaranteed Rank Minimization via Singular Value Projection , 2009, NIPS.

[4]  Yoram Bresler,et al.  Guaranteed Minimum Rank Approximation from Linear Observations by Nuclear Norm Minimization with an Ellipsoidal Constraint , 2009, ArXiv.

[5]  G. Papavassilopoulos,et al.  On the rank minimization problem over a positive semidefinite linear matrix inequality , 1997, IEEE Trans. Autom. Control..

[6]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[7]  Gene H. Golub,et al.  Matrix computations , 1983 .

[8]  W. Hackbusch Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.

[9]  B. R. Noack Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 2013 .

[10]  G. Taylor,et al.  Mechanism of the production of small eddies from large ones , 1937 .

[11]  Clarence W. Rowley,et al.  A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition , 2014, Journal of Nonlinear Science.

[12]  Pablo A. Parrilo,et al.  On cone-invariant linear matrix inequalities , 2000, IEEE Trans. Autom. Control..

[13]  C. Eckart,et al.  The approximation of one matrix by another of lower rank , 1936 .

[14]  K. Hasselmann PIPs and POPs: The reduction of complex dynamical systems using principal interaction and oscillation patterns , 1988 .

[15]  Athanasios C. Antoulas,et al.  An overview of approximation methods for large-scale dynamical systems , 2005, Annu. Rev. Control..

[16]  Clarence W. Rowley,et al.  Characterizing and correcting for the effect of sensor noise in the dynamic mode decomposition , 2014, Experiments in Fluids.

[17]  Matthew O. Williams,et al.  A Kernel-Based Approach to Data-Driven Koopman Spectral Analysis , 2014, 1411.2260.

[18]  Gianluigi Rozza,et al.  Certified reduced basis approximation for parametrized partial differential equations and applications , 2011 .

[19]  Steven L. Brunton,et al.  On dynamic mode decomposition: Theory and applications , 2013, 1312.0041.

[20]  I. Mezić,et al.  Applied Koopmanism. , 2012, Chaos.

[21]  Cécile Penland,et al.  Prediction of Nino 3 sea surface temperatures using linear inverse modeling , 1993 .

[22]  P. Goulart,et al.  Optimal mode decomposition for unsteady flows , 2013, Journal of Fluid Mechanics.

[23]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[24]  Steven L. Brunton,et al.  Dynamic mode decomposition - data-driven modeling of complex systems , 2016 .

[25]  Werner C. Rheinboldt,et al.  On the Error Behavior of the Reduced Basis Technique for Nonlinear Finite Element Approximations , 1983 .

[26]  Clarence W. Rowley,et al.  De-biasing the dynamic mode decomposition for applied Koopman spectral analysis of noisy datasets , 2015, Theoretical and Computational Fluid Dynamics.

[27]  A. Quarteroni,et al.  Reduced Basis Methods for Partial Differential Equations: An Introduction , 2015 .

[28]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[29]  Bamdev Mishra,et al.  Low-Rank Optimization with Trace Norm Penalty , 2011, SIAM J. Optim..

[30]  Ioannis G Kevrekidis,et al.  Extended dynamic mode decomposition with dictionary learning: A data-driven adaptive spectral decomposition of the Koopman operator. , 2017, Chaos.

[31]  Clarence W. Rowley,et al.  Variants of Dynamic Mode Decomposition: Boundary Condition, Koopman, and Fourier Analyses , 2012, J. Nonlinear Sci..

[32]  Yoram Bresler,et al.  ADMiRA: Atomic Decomposition for Minimum Rank Approximation , 2009, IEEE Transactions on Information Theory.

[33]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[34]  Albert Cohen,et al.  Approximation of high-dimensional parametric PDEs * , 2015, Acta Numerica.

[35]  P. Schmid,et al.  Low-rank and sparse dynamic mode decomposition , 2012 .

[36]  Tiangang Cui,et al.  Data‐driven model reduction for the Bayesian solution of inverse problems , 2014, 1403.4290.

[37]  R. A. Wentzell,et al.  Hydrodynamic and Hydromagnetic Stability. By S. CHANDRASEKHAR. Clarendon Press: Oxford University Press, 1961. 652 pp. £5. 5s. , 1962, Journal of Fluid Mechanics.

[38]  Stefan Klus,et al.  On the numerical approximation of the Perron-Frobenius and Koopman operator , 2015, 1512.05997.