Dispersive properties of alexandrite and beryllium hexaaluminate crystals

The Cr3+- and Ti3+-doped crystals of chrysoberyl (BeAl2O4) and beryllium hexaaluminate (BeAl6O10) are very attractive for generation of near-IR ultrashort laser pulses in a few-optical-cycle regime from mode-locked oscillators. This work presents a detailed study of dispersive properties of both crystals, which is necessary for optimal dispersion control in such lasers. Sellmeier equations for the chrysoberyl (Cr:BeAl2O4 – Alexandrite) and BeAl6O10 crystals were derived and second- and third-order dispersive properties (GVD and TOD, respectively) were analyzed. Position of the optical axes and conicity angle were also predicted for these biaxial crystals which is of practical importance for their applications as conerefringent elements in lasers and laser beam shapers.

[1]  D. E. Spence,et al.  60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. , 1991, Optics letters.

[2]  G. Tempea,et al.  Generation of smooth, ultra-broadband spectra directly from a prism-less Ti:sapphire laser , 2003 .

[3]  H. Haus Mode-locking of lasers , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[4]  H. Neugebauer CLAUSIUS-MOSOTTI EQUATION FOR CERTAIN TYPES OF ANISOTROPIC CRYSTALS , 1954 .

[5]  L Gallmann,et al.  Semiconductor saturable-absorber mirror assisted Kerr-lens mode-locked Ti:sapphire laser producing pulses in the two-cycle regime. , 1999, Optics letters.

[6]  G S Sokolovskii,et al.  Conical Refraction: new observations and a dual cone model. , 2013, Optics express.

[7]  F. Krausz,et al.  Ultrabroadband femtosecond lasers , 1994 .

[8]  M. Dutoit,et al.  Physical properties of BeAl2O4 single crystals , 1979 .

[9]  Amin Abdolvand,et al.  Conical refraction Nd:KGd(WO4)2 laser. , 2010, Optics express.

[10]  J G Fujimoto,et al.  Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser. , 1999, Optics letters.

[11]  Richard Scheps,et al.  Alexandrite laser pumped by semiconductor lasers , 1990 .

[12]  Valdas Pasiskevicius,et al.  Polarization-tunable Yb:KGW laser based on internal conical refraction. , 2007, Optics letters.

[13]  Donald F. Heller,et al.  Tunable alexandrite lasers: Development and performance , 1985 .

[14]  Bernd Sumpf,et al.  Tapered diode-pumped continuous-wave alexandrite laser , 2013 .

[15]  B. Boulanger,et al.  Experimental study of internal and external conical refractions in KTP , 1994 .

[16]  V. N. Matrosov,et al.  LASERS AND AMPLIFIERS: Prospects for the development of femtosecond laser systems based on beryllium aluminate crystals doped with chromium and titanium ions , 2001 .

[17]  Achaya Teppitaksak,et al.  High efficiency >26 W diode end-pumped Alexandrite laser. , 2014, Optics express.

[18]  A. H. Kahn,et al.  Electronic Polarizabilities of Ions in Crystals , 1953 .

[19]  John C. Walling,et al.  Tunable alexandrite lasers , 1980 .

[20]  V. Peet,et al.  Biaxial crystal as a versatile mode converter , 2010 .

[21]  J. Cormier,et al.  Study of dispersion compensation in femtosecond lasers , 1996 .

[22]  A. I. Alimpiev,et al.  Physical properties of BeAl6O10 single crystals , 1997 .