A robust ionic liquid–polymer gate insulator for high-performance flexible thin film transistors

Herein, we propose an ionic liquid–polymer dielectric layer for flexible electronics reinforced by a chemical interaction between the polymer matrix (PVP) and the ionic liquid. Due to the robust structures of the cross-linked PVP matrix and hydrogen bonding between the ionic liquid and PVP, the ionic liquid–PVP (IL–PVP) layer exhibited a good mechanical strength when bending up to 1000 times and a stable thermal behaviour up to 300 °C. Furthermore, the IL–PVP dielectric layer showed a high capacitance value of ∼2 μF cm−2 and was operated well as a gate insulator for flexible ZnO thin film transistors with a linear field-effect mobility of ∼3.3 cm2 V−1 s−1 at a gate bias of 3 V.

[1]  Fumihiko Tanaka,et al.  Viscoelastic properties of physically crosslinked networks. 1. Transient network theory , 1992 .

[2]  Kevin C. See,et al.  Solution-deposited sodium beta-alumina gate dielectrics for low-voltage and transparent field-effect transistors. , 2009, Nature materials.

[3]  D. Keszler,et al.  Aqueous inorganic inks for low-temperature fabrication of ZnO TFTs. , 2008, Journal of the American Chemical Society.

[4]  Tobin J Marks,et al.  Gate dielectric chemical structure-organic field-effect transistor performance correlations for electron, hole, and ambipolar organic semiconductors. , 2006, Journal of the American Chemical Society.

[5]  W. Burghardt,et al.  Self-Assembly and Stress Relaxation in Acrylic Triblock Copolymer Gels , 2007 .

[6]  Tae Il Lee,et al.  Low‐Temperature, Solution‐Processed and Alkali Metal Doped ZnO for High‐Performance Thin‐Film Transistors , 2012, Advanced materials.

[7]  Jooho Moon,et al.  Fully Flexible Solution‐Deposited ZnO Thin‐Film Transistors , 2010, Advanced materials.

[8]  H. Ohta,et al.  Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors , 2004, Nature.

[9]  Zhenan Bao,et al.  Water-stable organic transistors and their application in chemical and biological sensors , 2008, Proceedings of the National Academy of Sciences.

[10]  T. Lodge,et al.  “Cut and Stick” Rubbery Ion Gels as High Capacitance Gate Dielectrics , 2012, Advanced materials.

[11]  Jeong Yong Lee,et al.  Effect of annealing temperature on the electrical performances of solution-processed InGaZnO thin film transistors , 2011 .

[12]  J. Myoung,et al.  Gate Capacitance‐Dependent Field‐Effect Mobility in Solution‐Processed Oxide Semiconductor Thin‐Film Transistors , 2014 .

[13]  Xi Zhang,et al.  Hydrogen-bonding-directed layer-by-layer assembly of poly(4-vinylpyridine) and poly(4-vinylphenol): effect of solvent composition on multilayer buildup. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[14]  M. Kanatzidis,et al.  Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. , 2011, Nature materials.

[15]  Jieun Ko,et al.  Solution-processed amorphous hafnium-lanthanum oxide gate insulator for oxide thin-film transistors , 2014 .

[16]  Lydie Viau,et al.  Ionogels, ionic liquid based hybrid materials. , 2011, Chemical Society reviews.

[17]  H. Sirringhaus,et al.  Low-temperature, high-performance solution-processed metal oxide thin-film transistors formed by a ‘sol–gel on chip’ process. , 2011, Nature materials.

[18]  Youn Sang Kim,et al.  Interface engineering for suppression of flat-band voltage shift in a solution-processed ZnO/polymer dielectric thin film transistor , 2013 .

[19]  H. Katz,et al.  Structure, sodium ion role, and practical issues for β-alumina as a high-k solution-processed gate layer for transparent and low-voltage electronics. , 2011, ACS applied materials & interfaces.

[20]  G. Gelinck,et al.  Flexible active-matrix displays and shift registers based on solution-processed organic transistors , 2004, Nature materials.

[21]  Y. Ozaki,et al.  FTIR and FT-Raman Studies of Partially Miscible Poly(methyl methacrylate)/Poly(4-vinylphenol) Blends in Solid States , 1997 .

[22]  Bruno Scrosati,et al.  Ionic-liquid materials for the electrochemical challenges of the future. , 2009, Nature materials.

[23]  S. Lim,et al.  Hysteresis of pentacene thin-film transistors and inverters with cross-linked poly(4-vinylphenol) gate dielectrics , 2007 .

[24]  Jiyoul Lee,et al.  Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. , 2008, Nature materials.

[25]  J. Washiyama,et al.  Chain Pullout fracture of polymer interfaces , 1994 .

[26]  H. Morkoç,et al.  A COMPREHENSIVE REVIEW OF ZNO MATERIALS AND DEVICES , 2005 .

[27]  Yong-Young Noh,et al.  Flexible metal-oxide devices made by room-temperature photochemical activation of sol–gel films , 2012, Nature.

[28]  T. Lodge,et al.  High toughness, high conductivity ion gels by sequential triblock copolymer self-assembly and chemical cross-linking. , 2013, Journal of the American Chemical Society.

[29]  Henning Sirringhaus,et al.  Electron and ambipolar transport in organic field-effect transistors. , 2007, Chemical reviews.

[30]  Jong‐Jin Park,et al.  Highly Stretchable Polymer Transistors Consisting Entirely of Stretchable Device Components , 2014, Advances in Materials.

[31]  M. Yi,et al.  A high-temperature resistant polyimide gate insulator surface-modified with a YOx interlayer for high-performance, solution-processed Li-doped ZnO thin-film transistors , 2014 .

[32]  Timothy P. Lodge,et al.  A Unique Platform for Materials Design , 2008, Science.