Reality and Future of Rechargeable Lithium Batteries

Compared to other types of rechargeable batteries, the rechargeable lithium battery has many advantages, such as: higher energy density, lower self-discharge rate, higher voltages and longer cycle life. This article provides an overview of the cathode, anode, electrolyte and separator materials used in rechargeable lithium batteries. The advantages and challenges of various materials used in rechargeable lithium batteries will be discussed, followed by a highlight of developing trends in lithium battery research.

[1]  아츠오 야마다,et al.  Nonaqueous secondary battery , 2011 .

[2]  Jiulin Wang,et al.  Highly promoted electrochemical performance of 5 V LiCoPO4 cathode material by addition of vanadium , 2010 .

[3]  Lei Tian,et al.  Al-doped spinel LiAl0.1Mn1.9O4 with improved high-rate cyclability in aqueous electrolyte , 2010 .

[4]  Q. Li,et al.  Magnetite/graphene composites: microwave irradiation synthesis and enhanced cycling and rate performances for lithium ion batteries , 2010 .

[5]  M. Thackeray,et al.  LixCu6Sn5 (0 < x < 13): An Intermetallic Insertion Electrode for Rechargeable Lithium Batteries. , 2010 .

[6]  R. Marcilla,et al.  Ternary polymer electrolytes containing pyrrolidinium-based polymeric ionic liquids for lithium batteries , 2010 .

[7]  Jiawei Zhang,et al.  Novel PEO-based solid composite polymer electrolytes with inorganic–organic hybrid polyphosphazene microspheres as fillers , 2010 .

[8]  Yi Cui,et al.  New nanostructured Li2S/silicon rechargeable battery with high specific energy. , 2010, Nano letters.

[9]  Hongwei Tang,et al.  Synthesis and performance of high tap density LiFePO4/C cathode materials doped with copper ions , 2010 .

[10]  J. Dahn,et al.  Studies of tin–transition metal–carbon and tin–cobalt–transition metal–carbon negative electrode materials prepared by mechanical attrition , 2009 .

[11]  Andrzej Lewandowski,et al.  Ionic liquids as electrolytes for Li-ion batteries—An overview of electrochemical studies , 2009 .

[12]  S. H. Yoo,et al.  Enhancement of the Meltdown Temperature of a Lithium Ion Battery Separator via a Nanocomposite Coating , 2009 .

[13]  Min Gyu Kim,et al.  Silicon nanotube battery anodes. , 2009, Nano letters.

[14]  C. Liang,et al.  Hierarchically Structured Sulfur/Carbon Nanocomposite Material for High-Energy Lithium Battery , 2009 .

[15]  Sehee Lee,et al.  Glass–ceramic Li2S–P2S5 electrolytes prepared by a single step ball billing process and their application for all-solid-state lithium–ion batteries , 2009 .

[16]  Yi Cui,et al.  Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. , 2009, Nano letters.

[17]  Yi Cui,et al.  Impedance Analysis of Silicon Nanowire Lithium Ion Battery Anodes , 2009 .

[18]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[19]  Yi Cui,et al.  Surface Chemistry and Morphology of the Solid Electrolyte Interphase on Silicon Nanowire Lithium-ion Battery Anodes , 2009 .

[20]  Ilias Belharouak,et al.  High-energy cathode material for long-life and safe lithium batteries. , 2009, Nature materials.

[21]  Yi Cui,et al.  Structural and electrochemical study of the reaction of lithium with silicon nanowires , 2009 .

[22]  Y. Chung,et al.  Enhancement of Meltdown Temperature of the Polyethylene Lithium-Ion Battery Separator via Surface Coating with Polymers Having High Thermal Resistance , 2009 .

[23]  Byoungwoo Kang,et al.  Battery materials for ultrafast charging and discharging , 2009, Nature.

[24]  Jeff Tollefson,et al.  Car industry: Charging up the future , 2008, Nature.

[25]  J. Dahn,et al.  Effect of Annealing on Sn30Co30C40 Prepared by Mechanical Attriting , 2008 .

[26]  J. Sun,et al.  New lithium ion conductor, thio-LISICON lithium zirconium sulfide system , 2008 .

[27]  Haoshen Zhou,et al.  The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method. , 2008, Angewandte Chemie.

[28]  A. Yamada,et al.  Experimental visualization of lithium diffusion in LixFePO4. , 2008, Nature materials.

[29]  Tatsuo Nakamura,et al.  Silica-Composite Nonwoven Separators for Lithium-Ion Battery: Development and Characterization , 2008 .

[30]  A. Hayashi,et al.  All-solid-state rechargeable lithium batteries with Li2S as a positive electrode material , 2008 .

[31]  Jin-Song Hu,et al.  Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices , 2008 .

[32]  유리 브이. 미하일리크,et al.  Separation of electrolytes , 2007 .

[33]  J. Dahn,et al.  Tin–Transition Metal–Carbon Systems for Lithium-Ion Battery Negative Electrodes , 2007 .

[34]  A. Hayashi,et al.  Lithium ion conductivity of the Li2S–P2S5 glass-based electrolytes prepared by the melt quenching method , 2007 .

[35]  Z. Fu,et al.  Electrochemical reactivity of Co-Li2S nanocomposite for lithium-ion batteries , 2007 .

[36]  Shengbo Zhang A review on the separators of liquid electrolyte Li-ion batteries , 2007 .

[37]  Donghan Kim,et al.  Synthesis of LiFePO4 Nanoparticles in Polyol Medium and Their Electrochemical Properties , 2006 .

[38]  Christian Masquelier,et al.  Size Effects on Carbon-Free LiFePO4 Powders The Key to Superior Energy Density , 2006 .

[39]  Yang-Kook Sun,et al.  Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core-shell structure as the positive electrode material for lithium batteries. , 2005, Journal of the American Chemical Society.

[40]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[41]  N. Machida,et al.  Preparation of Li4.4GexSi1−x alloys by mechanical milling process and their properties as anode materials in all-solid-state lithium batteries , 2004 .

[42]  스티븐 제이. 비스코,et al.  Protected Active Metal Electrode and Battery Cell Structures with Non-aqueous Interlayer Architecture , 2004 .

[43]  P. Novák,et al.  Stable cycling of graphite in an ionic liquid based electrolyte. , 2004, Chemical communications.

[44]  S. Kondo,et al.  Solid state batteries with sulfide-based solid electrolytes , 2004 .

[45]  A. Yamada,et al.  Material design of new lithium ionic conductor, thio-LISICON, in the Li2S–P2S5 system , 2004 .

[46]  L. Nazar,et al.  Nano-network electronic conduction in iron and nickel olivine phosphates , 2004, Nature materials.

[47]  니몬 예브게니에스.,et al.  Ionically conductive composites for protection of active metal anodes , 2003 .

[48]  C. C. Ahn,et al.  Highly Reversible Lithium Storage in Nanostructured Silicon , 2003 .

[49]  Hajime Matsumoto,et al.  N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13–TFSI) – novel electrolyte base for Li battery , 2003 .

[50]  Y. Aihara,et al.  Liquid and Polymer Gel Electrolytes for Lithium Batteries Composed of Room-Temperature Molten Salt Doped by Lithium Salt , 2003 .

[51]  Bruno Scrosati,et al.  Structured Silicon Anodes for Lithium Battery Applications , 2003 .

[52]  Y. Katayama,et al.  Electrochemical Intercalation of Lithium into Graphite in Room-Temperature Molten Salt Containing Ethylene Carbonate , 2003 .

[53]  Pier Paolo Prosini,et al.  A novel intrinsically porous separator for self-standing lithium-ion batteries , 2002 .

[54]  K. Tadanaga,et al.  All Solid-state Lithium Secondary Batteries Using High Lithium Ion Conducting Li2S-P2S5 Glass-Ceramics. , 2002 .

[55]  Y. Chiang,et al.  Electronically conductive phospho-olivines as lithium storage electrodes , 2002, Nature materials.

[56]  Volker Hennige,et al.  Ceramic but flexible: new ceramic membrane foils for fuel cells and batteries , 2002 .

[57]  J. Dahn,et al.  Electrochemically Active Lithia/Metal and Lithium Sulfide/Metal Composites , 2002 .

[58]  Ladislav Kavan,et al.  Facile synthesis of nanocrystalline Li4Ti5O12 (spinel) exhibiting fast Li insertion , 2002 .

[59]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[60]  K. Amine,et al.  Change of Conductivity with Salt Content, Solvent Composition, and Temperature for Electrolytes of LiPF6 in Ethylene Carbonate-Ethyl Methyl Carbonate , 2001 .

[61]  Nathalie Ravet,et al.  Electroactivity of natural and synthetic triphylite , 2001 .

[62]  Jean-Marie Tarascon,et al.  Failure mechanism and improvement of the elevated temperature cycling of LiMn2O4 compounds through the use of the LiAlxMn2-xO4-zFz solid solution , 2001 .

[63]  D. R. Lloyd,et al.  Structure control of anisotropic and asymmetric polypropylene membrane prepared by thermally induced phase separation , 2000 .

[64]  Jaephil Cho,et al.  Li2+xMn0.91Cr1.09O4 Cathode Materials for Li-Ion Cells. , 2000 .

[65]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[66]  J. Dahn,et al.  Reaction of Li with Grain‐Boundary Atoms in Nanostructured Compounds , 2000 .

[67]  R. Kanno,et al.  Synthesis of a new lithium ionic conductor, thio-LISICON–lithium germanium sulfide system , 2000 .

[68]  Maria Forsyth,et al.  Lithium-doped plastic crystal electrolytes exhibiting fast ion conduction for secondary batteries , 1999, Nature.

[69]  Yong Liang,et al.  A High Capacity Nano ­ Si Composite Anode Material for Lithium Rechargeable Batteries , 1999 .

[70]  Tao Zheng,et al.  The elevated temperature performance of the LiMn2O4/C system: Failure and solutions , 1999 .

[71]  Martin Winter,et al.  Electrochemical lithiation of tin and tin-based intermetallics and composites , 1999 .

[72]  J. J. Murray,et al.  Electrochemistry and structure of Li2−xCryMn2−yO4 phases , 1999 .

[73]  Steve Greenbaum,et al.  NMR, DSC and high pressure electrical conductivity studies of liquid and hybrid electrolytes , 1999 .

[74]  John T. Vaughey,et al.  Li x Cu6Sn5 ( 0 < x < 13 ) : An Intermetallic Insertion Electrode for Rechargeable Lithium Batteries , 1999 .

[75]  J. Dahn,et al.  Mechanically Alloyed Sn‐Fe(‐C) Powders as Anode Materials for Li‐Ion Batteries: III. Sn2Fe : SnFe3 C Active/Inactive Composites , 1999 .

[76]  J. Dahn,et al.  Mechanically Alloyed Sn‐Fe(‐C) Powders as Anode Materials for Li‐Ion Batteries: I. The Sn2Fe ‐ C System , 1999 .

[77]  W. Ebner,et al.  Novel LiNi1‐xTix/2Mgx/2O2 Compounds as Cathode Materials for Safer Lithium‐Ion Batteries. , 1998 .

[78]  Y. Chiang,et al.  Stabilization of LiMnO2 in the α-NaFeO2 Structure Type by LiAlO2 Addition. , 1998 .

[79]  Petr Novák,et al.  Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .

[80]  B. Scrosati,et al.  Nanocomposite polymer electrolytes for lithium batteries , 1998, Nature.

[81]  J. Dahn,et al.  Structure and Electrochemistry of Li2CrxMn2-xO4 for 1.0 ≤ x ≤ 1.5. , 1998 .

[82]  J. Dahn,et al.  Structure and Electrochemistry of Li2Cr x Mn2 − x O 4 for 1.0 ⩽ x ⩽ 1.5 , 1998 .

[83]  J. Tarascon,et al.  Surface treatments of Li1+xMn2-xO4 spinels for improved elevated temperature performance , 1997 .

[84]  Joan Fuller,et al.  The room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate : Electrochemical couples and physical properties , 1997 .

[85]  Martin Winter,et al.  Will advanced lithium-alloy anodes have a chance in lithium-ion batteries? , 1997 .

[86]  T. Ohzuku,et al.  Innovative insertion material of LiAl 1/4Ni 3/4O 2 ( R- m) for lithium-ion (shuttlecock) batteries , 1997 .

[87]  J. Dahn,et al.  Electrochemical and In Situ X‐Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites , 1997 .

[88]  Tsutomu Miyasaka,et al.  Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material , 1997 .

[89]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[90]  Takahisa Shodai,et al.  Study of Li3 − xMxN (M: Co, Ni or Cu) system for use as anode material in lithium rechargeable cells , 1996 .

[91]  Peter G. Bruce,et al.  Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries , 1996, Nature.

[92]  J. Fuller,et al.  Rechargeable Lithium and Sodium Anodes in Chloroaluminate Molten Salts Containing Thionyl Chloride , 1995 .

[93]  Tao Zheng,et al.  Mechanisms for Lithium Insertion in Carbonaceous Materials , 1995, Science.

[94]  Tsutomu Ohzuku,et al.  Zero‐Strain Insertion Material of Li [ Li1 / 3Ti5 / 3 ] O 4 for Rechargeable Lithium Cells , 1995 .

[95]  Dominique Guyomard,et al.  High voltage stable liquid electrolytes for Li1+xMn2O4/carbon rocking-chair lithium batteries , 1995 .

[96]  J. Tarascon,et al.  New electrolyte compositions stable over the 0 to 5 V voltage range and compatible with the Li1+xMn2O4/carbon Li-ion cells , 1994 .

[97]  A. Myerson,et al.  Thermally induced phase separation in ternary crystallizable polymer solutions , 1994 .

[98]  J. Fuller,et al.  Reversible Lithium‐Graphite Anodes in Room‐Temperature Chloroaluminate Melts , 1994 .

[99]  J. Tarascon,et al.  Rechargeable Li1+xMn2O4/Carbon Cells with a New Electrolyte Composition. Potentiostatic Studies and Application to Practical Cells. , 1994 .

[100]  M. Thackeray,et al.  Lithium extraction from orthorhombic lithium manganese oxide and the phase transformation to spinel , 1993 .

[101]  J. Tarascon,et al.  Rechargeable Li1 + x Mn2 O 4 / Carbon Cells with a New Electrolyte Composition Potentiostatic Studies and Application to Practical Cells , 1993 .

[102]  Jean-Marie Tarascon,et al.  Li Metal‐Free Rechargeable LiMn2O4/Carbon Cells: Their Understanding and Optimization. , 1992 .

[103]  J. Tarascon,et al.  Li Metal‐Free Rechargeable LiMn2 O 4 / Carbon Cells: Their Understanding and Optimization , 1992 .

[104]  D. R. Lloyd,et al.  Microporous membrane formation via thermally-induced phase separation. V. Effect of diluent mobility and crystallization on the structure of isotactic polypropylene membranes , 1991 .

[105]  J. Tarascon,et al.  Li Metal‐Free Rechargeable Batteries Based on Li1 + x Mn2 O 4 Cathodes ( 0 ≤ x ≤ 1 ) and Carbon Anodes , 1991 .

[106]  J. Tarascon,et al.  THE SPINEL PHASE OF LIMN2O4 AS A CATHODE IN SECONDARY LITHIUM CELLS , 1991 .

[107]  Jeff Dahn,et al.  Rechargeable LiNiO2 / Carbon Cells , 1991 .

[108]  Jeff Dahn,et al.  Structure and electrochemistry of Li1±yNiO2 and a new Li2NiO2 phase with the Ni (OH)2 structure , 1990 .

[109]  Robert A. Huggins,et al.  Kinetic and Thermodynamic Parameters of Several Binary Lithium Alloy Negative Electrode Materials at Ambient Temperature , 1987 .

[110]  Edward J. Plichta,et al.  A rechargeable Li/LixCoO2 Cell , 1987 .

[111]  R. Huggins,et al.  Behavior of Some Binary Lithium Alloys as Negative Electrodes in Organic Solvent‐Based Electrolytes , 1986 .

[112]  R. Huggins,et al.  Chemical diffusion in intermediate phases in the lithium-silicon system. [415/sup 0/C] , 1981 .

[113]  Robert A. Huggins,et al.  All‐Solid Lithium Electrodes with Mixed‐Conductor Matrix , 1981 .

[114]  R. Huggins,et al.  Chemical diffusion in intermediate phases in the lithium-tin system , 1980 .

[115]  K. Y. Cheung,et al.  IONIC CONDUCTIVITY OF LI14ZN(GEO4)4 (LISICON) , 1979 .

[116]  K. Y. Cheung,et al.  Ionic conductivity of Li14Zn(GeO44 (Lisicon) , 1978 .

[117]  H. Hong,et al.  Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors☆ , 1978 .

[118]  M. Aigner,et al.  To Our Readers , 1887, Basic Research in Cardiology.

[119]  M. Armand,et al.  A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries. , 2010, Nature materials.

[120]  Candace K. Chan,et al.  Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. , 2009, Nano letters.

[121]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[122]  J. Dahn,et al.  Comparison of mechanically alloyed and sputtered tin–cobalt–carbon as an anode material for lithium-ion batteries , 2008 .

[123]  Chunsheng Wang,et al.  Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells , 2007 .

[124]  Pankaj Arora,et al.  Battery separators. , 2004, Chemical reviews.

[125]  J. Howard,et al.  Characterization of microporous separators for lithium-ion batteries , 1999 .

[126]  W. B. Ebner,et al.  Novel LiNi1 − x Ti x / 2Mg x / 2 O 2 Compounds as Cathode Materials for Safer Lithium‐Ion Batteries , 1999 .

[127]  Michael M. Thackeray,et al.  Manganese oxides for lithium batteries , 1997 .

[128]  J. Dahn,et al.  Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins , 1996 .

[129]  C. Angell,et al.  Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity , 1993, Nature.