Boundary value problems for the diffusion equation of the variable order in differential and difference settings

Abstract Solutions of boundary value problems for a diffusion equation of fractional and variable order in differential and difference settings are studied. It is shown that the method of the energy inequalities is applicable to obtaining a priori estimates for these problems exactly as in the classical case. The credibility of the obtained results is verified by performing numerical calculations for a test problem.

[1]  F. I. Taukenova,et al.  Difference methods for solving boundary value problems for fractional differential equations , 2006 .

[2]  A. A. Samarskii,et al.  The Theory of Difference Schemes , 2001 .

[3]  Carlos F.M. Coimbra,et al.  Mechanics with variable‐order differential operators , 2003 .

[4]  I. Podlubny Fractional differential equations , 1998 .

[5]  Fawang Liu,et al.  Numerical Methods for the Variable-Order Fractional Advection-Diffusion Equation with a Nonlinear Source Term , 2009, SIAM J. Numer. Anal..

[6]  S. K. Godunov,et al.  Theory of difference schemes : an introduction , 1964 .

[7]  Fawang Liu,et al.  Numerical techniques for the variable order time fractional diffusion equation , 2012, Appl. Math. Comput..

[8]  F. Mainardi The fundamental solutions for the fractional diffusion-wave equation , 1996 .

[9]  Adem Kilicman,et al.  Fractional Calculus and Its Applications in Applied Mathematics and Other Sciences , 2014 .

[10]  Yury F. Luchko Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation , 2011 .

[11]  Carl F. Lorenzo,et al.  Variable Order and Distributed Order Fractional Operators , 2002 .

[12]  B. Ross,et al.  Fractional Calculus and Its Applications , 1975 .

[13]  R. Gorenflo,et al.  Time-fractional derivatives in relaxation processes: a tutorial survey , 2008, 0801.4914.

[14]  Teodor M. Atanackovic,et al.  Hamilton’s principle with variable order fractional derivatives , 2011 .

[15]  M. Kh. Shkhanukov-Lafishev,et al.  Locally one-dimensional difference schemes for the fractional order diffusion equation , 2008 .

[16]  A. Alikhanov A priori estimates for solutions of boundary value problems for fractional-order equations , 2010, 1105.4592.

[17]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[18]  Yury F. Luchko Some uniqueness and existence results for the initial-boundary-value problems for the generalized time-fractional diffusion equation , 2010, Comput. Math. Appl..

[19]  A. Pskhu,et al.  The fundamental solution of a diffusion-wave equation of fractional order , 2009 .

[20]  I. Podlubny Matrix Approach to Discrete Fractional Calculus , 2000 .

[21]  CHANG-MING CHEN,et al.  Numerical methods for solving a two-dimensional variable-order anomalous subdiffusion equation , 2012, Math. Comput..

[22]  Fawang Liu,et al.  Stability and convergence of a new explicit finite-difference approximation for the variable-order nonlinear fractional diffusion equation , 2009, Appl. Math. Comput..

[23]  Fawang Liu,et al.  Numerical Schemes with High Spatial Accuracy for a Variable-Order Anomalous Subdiffusion Equation , 2010, SIAM J. Sci. Comput..

[24]  Yuri Luchko,et al.  Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation , 2011, 1111.2961.

[25]  Mark M. Meerschaert,et al.  Fractional Cauchy problems on bounded domains , 2008, 0802.0673.