Microstructural, thermomechanical and tribological behavior of refractory high-entropy AlxCr0.25Nb0.5Ta0.5Ti1.5 (x = 0.5, 1) alloys

[1]  Jincheng Wang,et al.  Oxygen-assisted spinodal structure achieves 1.5 GPa yield strength in a ductile refractory high-entropy alloy , 2023, Journal of Materials Science & Technology.

[2]  Peng Han,et al.  L12-strengthened heterostructure high-entropy alloys with ultra-high strength over a wide temperature range , 2022, Materials Science and Engineering: A.

[3]  P. Han,et al.  Ultra-high strength assisted by nano-precipitates in a heterostructural high-entropy alloy , 2022, Journal of Alloys and Compounds.

[4]  A. Adesina Tribological Behavior of TiN/TiAlN, CrN/TiAlN, and CrAlN/TiAlN Coatings at Elevated Temperature , 2022, Journal of Materials Engineering and Performance.

[5]  A. Kasar,et al.  Tribological Properties of High-Entropy Alloys under Dry Conditions for a Wide Temperature Range—A Review , 2021, Materials.

[6]  A. Hakeem,et al.  Comparative evaluation of thermal and mechanical properties of nickel alloy 718 prepared using selective laser melting, spark plasma sintering, and casting methods , 2021 .

[7]  Sheela Singh,et al.  Thermal stability and thermal expansion behavior of FeCoCrNi2Al high entropy alloy , 2021 .

[8]  A. Sorour,et al.  Thermomechanical and tribological properties of spark plasma sintered bearing steel/cBN(Ni) composites for engineering applications , 2020 .

[9]  S. Sheikh,et al.  Alloying effect on the oxidation behavior of a ductile Al0.5Cr0.25Nb0.5Ta0.5Ti1.5 refractory high-entropy alloy , 2020 .

[10]  X. Montero,et al.  Forming protective alumina scale for ductile refractory high-entropy alloys via aluminizing , 2020 .

[11]  Shizhong Yang,et al.  Mechanical and Thermal Properties of Low-Density Al20+xCr20-xMo20-yTi20V20+y Alloys , 2020, Crystals.

[12]  A. K. Tieu,et al.  Effects of normal load and velocity on the dry sliding tribological behaviour of CoCrFeNiMo0.2 high entropy alloy , 2020 .

[13]  I. Guillot,et al.  Temperature dependence of elastic moduli in a refractory HfNbTaTiZr high-entropy alloy , 2019, Journal of Alloys and Compounds.

[14]  P. Liaw,et al.  Effects of temperature on the tribological behavior of Al0.25CoCrFeNi high-entropy alloy , 2019, Journal of Materials Science & Technology.

[15]  S. Sheikh,et al.  Aluminizing for enhanced oxidation resistance of ductile refractory high-entropy alloys , 2018, Intermetallics.

[16]  Michael C. Gao,et al.  Wear behavior of Al_0.6CoCrFeNi high-entropy alloys: Effect of environments , 2018, Journal of Materials Research.

[17]  H. Arora,et al.  Corrosion, Erosion and Wear Behavior of Complex Concentrated Alloys: A Review , 2018, Metals.

[18]  Daniel B. Miracle,et al.  Development and exploration of refractory high entropy alloys—A review , 2018, Journal of Materials Research.

[19]  U. Klement,et al.  Accelerated oxidation in ductile refractory high-entropy alloys , 2018, Intermetallics.

[20]  J. Qiao,et al.  Effect of nitriding on the tribological properties of Al1.3CoCuFeNi2 high-entropy alloy , 2017 .

[21]  E. Georgatis,et al.  Microstructural features and dry - Sliding wear response of MoTaNbZrTi high entropy alloy , 2017 .

[22]  J. Qiao,et al.  Mechanical properties of refractory high-entropy alloys: Experiments and modeling , 2017 .

[23]  M. Heilmaier,et al.  High-Temperature Oxidation Behavior of Refractory High-Entropy Alloys: Effect of Alloy Composition , 2017, Oxidation of Metals.

[24]  C. Persson,et al.  Alloy design for intrinsically ductile refractory high-entropy alloys , 2016 .

[25]  D. Miracle,et al.  A critical review of high entropy alloys and related concepts , 2016 .

[26]  A. Lekatou,et al.  Microstructure and wear behavior of a refractory high entropy alloy , 2016 .

[27]  R. Ritchie,et al.  A fracture-resistant high-entropy alloy for cryogenic applications , 2014, Science.

[28]  K. Dahmen,et al.  Microstructures and properties of high-entropy alloys , 2014 .

[29]  Aizhen Zhang,et al.  Microstructure and oxidation behavior of new refractory high entropy alloys , 2014 .

[30]  Jien-Wei Yeh,et al.  Alloy Design Strategies and Future Trends in High-Entropy Alloys , 2013 .

[31]  B. Bhushan Introduction to Tribology: Bhushan/Introduction , 2013 .

[32]  Sheng Guo,et al.  Entropy-driven phase stability and slow diffusion kinetics in an Al0.5CoCrCuFeNi high entropy alloy , 2012 .

[33]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[34]  D. Dimiduk,et al.  Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy , 2012, Journal of Materials Science.

[35]  C. Woodward,et al.  Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy , 2012, Journal of Materials Science.

[36]  J. Yeh,et al.  Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys , 2011 .

[37]  C. Woodward,et al.  Microstructure and Room Temperature Properties of a High-Entropy TaNbHfZrTi Alloy (Postprint) , 2011 .

[38]  D. Miracle,et al.  Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys , 2011 .

[39]  P. Liaw,et al.  Refractory high-entropy alloys , 2010 .

[40]  J. Yeh,et al.  Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys , 2010 .

[41]  J. Perepezko The Hotter the Engine, the Better , 2009, Science.

[42]  Jien-Wei Yeh,et al.  Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0 ≤ x ≤2) high-entropy alloys , 2009 .

[43]  G. Ghosh,et al.  Integrated design of Nb-based superalloys: Ab initio calculations, computational thermodynamics and kinetics, and experimental results , 2007 .

[44]  Yves Berthier,et al.  Wear modeling and the third body concept , 2007 .

[45]  Jien-Wei Yeh,et al.  Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content , 2006 .

[46]  B. Cantor,et al.  Microstructural development in equiatomic multicomponent alloys , 2004 .

[47]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .

[48]  R. Ritchie,et al.  Mo‐Si‐B Alloys for Ultrahigh‐Temperature Structural Applications , 2004, Advanced materials.

[49]  A. Banerjee,et al.  Thermal expansion studies on Inconel-600® by high temperature X-ray diffraction , 2004 .

[50]  D. Dimiduk,et al.  Advanced intermetallic alloys—beyond gamma titanium aluminides , 1997 .

[51]  K. Gahr,et al.  Microstructure and Wear of Materials , 1987 .

[52]  D. Rigney,et al.  Plastic deformation and sliding friction of metals , 1979 .

[53]  J. Archard Contact and Rubbing of Flat Surfaces , 1953 .

[54]  Z. Iqbal,et al.  Mechanical and tribological characterization of AlCrN coated spark plasma sintered W–25%Re–Hfc composite material for FSW tool application , 2019, Journal of Materials Research and Technology.

[55]  R. Shetty,et al.  Wear resistance enhancement of titanium alloy (Ti–6Al–4V) by ball burnishing process , 2017 .

[56]  P. Srinivasa Pai,et al.  Significance of Tribocorrosion in Biomedical Applications: Overview and Current Status , 2009 .

[57]  Q. Gao,et al.  Microstructure and mechanical properties of Nb-doped NiAl-Cr(Mo) eutectic prepared by injection casting , 2005 .

[58]  T. Nieh,et al.  Recent advances in aerospace refractory metal alloys , 1988 .