Deterministic Preparation of Dicke States

The Dicke state $|D_k^n\rangle$ is an equal-weight superposition of all $n$-qubit states with Hamming Weight $k$ (i.e. all strings of length $n$ with exactly $k$ ones over a binary alphabet). Dicke states are an important class of entangled quantum states that among other things serve as starting states for combinatorial optimization quantum algorithms. We present a deterministic quantum algorithm for the preparation of Dicke states. Implemented as a quantum circuit, our scheme uses $O(kn)$ gates, has depth $O(n)$ and needs no ancilla qubits. The inductive nature of our approach allows for linear-depth preparation of arbitrary symmetric pure states and -- used in reverse -- yields a quasilinear-depth circuit for efficient compression of quantum information in the form of symmetric pure states, improving on existing work requiring quadratic depth. All of these properties even hold for Linear Nearest Neighbor architectures.

[1]  D. Bacon,et al.  Efficient quantum circuits for Schur and Clebsch-Gordan transforms. , 2004, Physical review letters.

[2]  Alastair Kay,et al.  Tutorial on the Quantikz Package , 2018, 1809.03842.

[3]  Rupak Biswas,et al.  From the Quantum Approximate Optimization Algorithm to a Quantum Alternating Operator Ansatz , 2017, Algorithms.

[4]  Aephraim M. Steinberg,et al.  Quantum data compression of a qubit ensemble. , 2014, Physical review letters.

[5]  Igor L. Markov,et al.  On the CNOT-cost of TOFFOLI gates , 2008, Quantum Inf. Comput..

[6]  F. Diker Deterministic construction of arbitrary $W$ states with quadratically increasing number of two-qubit gates , 2016, 1606.09290.

[7]  G. Agarwal,et al.  Operational determination of multiqubit entanglement classes via tuning of local operations. , 2007, Physical review letters.

[8]  Sahin Kaya Ozdemir,et al.  A necessary and sufficient condition to play games in quantum mechanical settings , 2007 .

[9]  R. Dicke Coherence in Spontaneous Radiation Processes , 1954 .

[10]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[11]  F. Parisio,et al.  All bipartitions of arbitrary Dicke states , 2018, 1801.00762.

[12]  D. J. Wineland,et al.  Preparation of Dicke states in an ion chain , 2009, 0909.0046.

[13]  Edward Farhi,et al.  Finding cliques by quantum adiabatic evolution , 2002, Quantum Inf. Comput..

[14]  M Paternostro,et al.  Experimental realization of Dicke states of up to six qubits for multiparty quantum networking. , 2009, Physical review letters.

[15]  R. Handel,et al.  Deterministic Dicke-state preparation with continuous measurement and control , 2004, quant-ph/0402137.

[16]  G. Tóth,et al.  Multipartite entanglement and high precision metrology , 2010, 1006.4368.

[17]  J. C. Retamal,et al.  Deterministic generation of arbitrary symmetric states and entanglement classes , 2012, 1211.0404.

[18]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[19]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[20]  Dharmendra S. Modha,et al.  Reversible arithmetic coding for quantum data compression , 2000, IEEE Trans. Inf. Theory.

[21]  N. Vitanov,et al.  Creation of arbitrary Dicke and NOON states of trapped-ion qubits by global addressing with composite pulses , 2012, 1209.4488.

[22]  Guang-Can Guo,et al.  Generation of atomic entangled states with selective resonant interaction in cavity quantum electrodynamics , 2007 .

[23]  Gangcheng Wang,et al.  Generation of Dicke states in the ultrastrong-coupling regime of circuit QED systems , 2017 .

[24]  Martin Plesch,et al.  Efficient compression of quantum information , 2009, 0907.1764.

[25]  Xiao-Qiang Shao,et al.  Deterministic generation of arbitrary multi-atom symmetric Dicke states by a combination of quantum Zeno dynamics and adiabatic passage , 2010 .

[26]  Arpita Maitra,et al.  Efficient quantum algorithms to construct arbitrary Dicke states , 2012, Quantum Inf. Process..

[27]  William J. Munro,et al.  Generalized parity measurements , 2008, 0806.0982.

[28]  G. Tóth,et al.  Experimental observation of four-photon entangled Dicke state with high fidelity. , 2006, Physical review letters.

[29]  Géza Tóth,et al.  Experimental entanglement of a six-photon symmetric Dicke state. , 2009, Physical review letters.

[30]  Michele Mosca,et al.  Quantum Networks for Generating Arbitrary Quantum States , 2001, OFC 2001.