Regional estimation of savanna grass nitrogen using the red-edge band of the spaceborne RapidEye sensor

[1]  Alan A. Ager,et al.  Broadband, red-edge information from satellites improves early stress detection in a New Mexico conifer woodland , 2011 .

[2]  A. Ramoelo,et al.  Water-removed spectra increase the retrieval accuracy when estimating savanna grass nitrogen and phosphorus concentrations , 2011 .

[3]  Andrew K. Skidmore,et al.  Dry season mapping of savanna forage quality, using the hyperspectral Carnegie Airborne Observatory sensor , 2011 .

[4]  M. Cho,et al.  Integrating environmental and in situ hyperspectral remote sensing variables for grass nitrogen estimation in Savannah ecosystems , 2011 .

[5]  Janet Franklin,et al.  Geospatial tools address emerging issues in spatial ecology: a review and commentary on the Special Issue , 2011, Int. J. Geogr. Inf. Sci..

[6]  Yuhong He,et al.  Scaling up Semi-Arid Grassland Biochemical Content from the Leaf to the Canopy Level: Challenges and Opportunities , 2010, Sensors.

[7]  Sanford Weisberg,et al.  An R Companion to Applied Regression , 2010 .

[8]  Clement Atzberger,et al.  Retrieval of chlorophyll and nitrogen in Norway spruce (Picea abies L. Karst.) using imaging spectroscopy , 2010, Int. J. Appl. Earth Obs. Geoinformation.

[9]  Onisimo Mutanga,et al.  Forage quality of savannas - Simultaneously mapping foliar protein and polyphenols for trees and grass using hyperspectral imagery , 2010 .

[10]  Vuolo Francesco,et al.  Retrieval of biophysical vegetation products from RapidEye imagery , 2010 .

[11]  Moses Azong Cho,et al.  Integrating remote sensing and ancillary data for regional ecosystem assessment: Eucalyptus grandis agro-system in KwaZulu-Natal, South Africa , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[12]  Contents , 2018, Brain and Development.

[13]  Chaoyang Wu,et al.  Estimating chlorophyll content from hyperspectral vegetation indices : Modeling and validation , 2008 .

[14]  Clement Atzberger,et al.  LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements , 2008 .

[15]  D. Adams,et al.  Amphibians Do Not Follow Bergmann's Rule , 2008, Evolution; international journal of organic evolution.

[16]  Milan Chytrý,et al.  The Vegetation of South Africa, Lesotho and Swaziland , 2008 .

[17]  Andrew Jarvis,et al.  Hole-filled SRTM for the globe Version 4 , 2008 .

[18]  J. Dijkshoorn,et al.  Soil and landform properties for LADA partner countries (Argentina, China, Cuba, Senegal, South Africa and Tunisia) , 2008 .

[19]  F. Langevelde,et al.  Assembling a diet from different places , 2008 .

[20]  Andrew K. Skidmore,et al.  Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression , 2007, Int. J. Appl. Earth Obs. Geoinformation.

[21]  Sushma Panigrahy,et al.  Use of hyperspectral data to assess the effects of different nitrogen applications on a potato crop , 2007, Precision Agriculture.

[22]  J. Eitel,et al.  Using in‐situ measurements to evaluate the new RapidEye™ satellite series for prediction of wheat nitrogen status , 2007 .

[23]  A. Skidmore,et al.  Red edge shift and biochemical content in grass canopies , 2007 .

[24]  D. Adams,et al.  Bioclimatic modelling, morphology, and behaviour reveal alternative mechanisms regulating the distributions of two parapatric salamander species , 2007 .

[25]  L Mucina,et al.  Vegetation of southern Africa - biomass production patterns and biofuel potential , 2007 .

[26]  Andrew K. Skidmore,et al.  Parent material and fire as principle drivers of foliage quality in woody plants , 2006 .

[27]  C. C. Grant,et al.  The importance of nutrient hot-spots in the conservation and management of large wild mammalian herbivores in semi-arid savannas , 2006 .

[28]  M. Cho,et al.  A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method , 2006 .

[29]  H. Prins,et al.  Effects of sward structure on herbivore foraging behaviour in a South African savanna: An investigation of the forage maturation hypothesis , 2006 .

[30]  J. Vos,et al.  Hand-held chlorophyll meter: a promising tool to assess the nitrogen status of potato foliage , 1993, Potato Research.

[31]  J. L. Parra,et al.  Very high resolution interpolated climate surfaces for global land areas , 2005 .

[32]  Handan Çamdevýren,et al.  Use of principal component scores in multiple linear regression models for prediction of Chlorophyll-a in reservoirs , 2005 .

[33]  Liangyun Liu,et al.  Prediction of grain protein content in winter wheat (Triticum aestivum L.) using plant pigment ratio (PPR) , 2004 .

[34]  J. Dash,et al.  The MERIS terrestrial chlorophyll index , 2004 .

[35]  B. Turner,et al.  Estimating foliage nitrogen concentration from HYMAP data using continuum, removal analysis , 2004 .

[36]  A. Skidmore,et al.  Narrow band vegetation indices overcome the saturation problem in biomass estimation , 2004 .

[37]  Onisimo Mutanga,et al.  Explaining grass‐nutrient patterns in a savanna rangeland of southern Africa , 2004 .

[38]  Pablo J. Zarco-Tejada,et al.  Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops , 2004 .

[39]  John R. Miller,et al.  Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture , 2004 .

[40]  M. Coe,et al.  The relationships between soil factors, grass nutrients and the foraging behaviour of wildebeest and zebra , 1992, Oecologia.

[41]  J. Schjoerring,et al.  Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression , 2003 .

[42]  G. Metternicht Vegetation indices derived from high-resolution airborne videography for precision crop management , 2003 .

[43]  J. Dijkshoorn SOTER database for Southern Africa (SOTERSAF) : technical report , 2003 .

[44]  John R. Miller,et al.  Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture , 2002 .

[45]  Han Olff,et al.  Global environmental controls of diversity in large herbivores , 2002, Nature.

[46]  A. K. Skidmore,et al.  Derivation of the red edge index using the MERIS standard band setting , 2002 .

[47]  P. Gong,et al.  Analysis of in situ hyperspectral data for nutrient estimation of giant sequoia , 2002 .

[48]  J. Fox Bootstrapping Regression Models , 2002 .

[49]  N. Broge,et al.  Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density , 2001 .

[50]  Lalit Kumar,et al.  Imaging spectroscopy and vegetation science , 2001 .

[51]  Paul D. Ayers,et al.  Evaluation and Refinement of the Nitrogen Reflectance Index (NRI) for Site-Specific Fertilizer Management , 2001 .

[52]  Luigi Guarino,et al.  Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS , 2001 .

[53]  Moon S. Kim,et al.  Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance , 2000 .

[54]  P. Thenkabail,et al.  Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop Characteristics , 2000 .

[55]  Manfred Ehrhardt,et al.  Methods of seawater analysis , 1999 .

[56]  N. Owen‐Smith,et al.  Seasonal selection of soil types and grass swards by roan antelope in a South African savanna , 1998 .

[57]  Gregory P. Asner,et al.  Variability in Leaf and Litter Optical Properties: Implications for BRDF Model Inversions Using AVHRR, MODIS, and MISR , 1998 .

[58]  R. Tibshirani,et al.  Improvements on Cross-Validation: The 632+ Bootstrap Method , 1997 .

[59]  A. Huete,et al.  A comparison of vegetation indices over a global set of TM images for EOS-MODIS , 1997 .

[60]  A. Gitelson,et al.  Use of a green channel in remote sensing of global vegetation from EOS- MODIS , 1996 .

[61]  D. Massart,et al.  The Radial Basis Functions — Partial Least Squares approach as a flexible non-linear regression technique , 1996 .

[62]  G. Rondeaux,et al.  Optimization of soil-adjusted vegetation indices , 1996 .

[63]  R. G. Smith,et al.  Forecasting wheat yield in a Mediterranean-type environment from the NOAA satellite , 1995 .

[64]  C. Elvidge,et al.  Comparison of broad-band and narrow-band red and near-infrared vegetation indices , 1995 .

[65]  I. Filella,et al.  Reflectance assessment of mite effects on apple trees , 1995 .

[66]  B. Yoder,et al.  Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400–2500 nm) at leaf and canopy scales , 1995 .

[67]  J. Roujean,et al.  Estimating PAR absorbed by vegetation from bidirectional reflectance measurements , 1995 .

[68]  A. Huete,et al.  A Modified Soil Adjusted Vegetation Index , 1994 .

[69]  J. W. Bradbury,et al.  The fine-scale mapping of grassland protein densities , 1994 .

[70]  C. Wessman Imaging spectrometry for remote sensing of ecosystem processes , 1992 .

[71]  F. Baret,et al.  Potentials and limits of vegetation indices for LAI and APAR assessment , 1991 .

[72]  S. McNaughton,et al.  Mineral nutrition and seasonal movements of African migratory ungulates , 1990, Nature.

[73]  Herbert H. T. Prins,et al.  A balanced diet as a goal for grazing: the food of the Manyara buffalo , 1989 .

[74]  Hongzhi An,et al.  Fast stepwise procedures of selection of variables by using AIC and BIC criteria , 1989 .

[75]  S.E. Plummer Relationships Between The Nitrogen Content Of Grass And Reflectance , 1988, International Geoscience and Remote Sensing Symposium, 'Remote Sensing: Moving Toward the 21st Century'..

[76]  A. Huete A soil-adjusted vegetation index (SAVI) , 1988 .

[77]  S. Plummer,et al.  Exploring the relationships between leaf nitrogen content, biomass and the near-infrared/red reflectance ratio , 1988 .

[78]  Bernd Droge,et al.  Bootstrap and Cross-Validation Estimates of the Prediction Error for Linear Regression Models , 1984 .

[79]  D. Horler,et al.  The red edge of plant leaf reflectance , 1983 .

[80]  C. Tucker Asymptotic nature of grass canopy spectral reflectance. , 1977, Applied optics.

[81]  E. Lehmann,et al.  Nonparametrics: Statistical Methods Based on Ranks , 1976 .

[82]  C. Jordan Derivation of leaf-area index from quality of light on the forest floor , 1969 .

[83]  D. M. Gates,et al.  Spectral Properties of Plants , 1965 .