Epileptic afterdischarge in the hippocampal–entorhinal system: current source density and unit studies

[1]  C. Vera,et al.  Investigations on the Mechanism of Epileptic Discharge in the Hippocampus , 1961, Epilepsia.

[2]  J. B. Ranck,et al.  Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats. I. Behavioral correlates and firing repertoires. , 1973, Experimental neurology.

[3]  D. Prince,et al.  Extracellular potassium activity during epileptogenesis. , 1974, Experimental neurology.

[4]  G. Lynch,et al.  Physiological studies of the reciprocal connections between the hippocampus and entorhinal cortex , 1975, Experimental Neurology.

[5]  C. Nicholson,et al.  Experimental optimization of current source-density technique for anuran cerebellum. , 1975, Journal of neurophysiology.

[6]  G. Somjen,et al.  Functions of primary afferents and responses of extracellular K+ during spinal epileptiform seizures. , 1976, Electroencephalography and clinical neurophysiology.

[7]  D. Prince,et al.  Neurophysiology of epilepsy. , 1978, Annual review of neuroscience.

[8]  G. Buzsáki,et al.  Direct afferent excitation and long-term potentiation of hippocampal interneurons. , 1982, Journal of neurophysiology.

[9]  H. Haas,et al.  Synchronized bursting of CA1 hippocampal pyramidal cells in the absence of synaptic transmission , 1982, Nature.

[10]  R. Traub,et al.  Cellular mechanism of neuronal synchronization in epilepsy. , 1982, Science.

[11]  G. Buzsáki,et al.  Cellular bases of hippocampal EEG in the behaving rat , 1983, Brain Research Reviews.

[12]  R. S. Sloviter “Epileptic” brain damage in rats induced by sustained electrical stimulation of the perforant path. I. Acute electrophysiological and light microscopic studies , 1983, Brain Research Bulletin.

[13]  G. Somjen Acidification of interstitial fluid in hippocampal formation caused by seizures and by spreading depression , 1984, Brain Research.

[14]  T. Dunwiddie,et al.  Adenosine increases synaptic facilitation in the in vitro rat hippocampus: evidence for a presynaptic site of action. , 1985, The Journal of physiology.

[15]  J. McNamara,et al.  Sustained potential shifts and paroxysmal discharges in hippocampal formation. , 1985, Journal of neurophysiology.

[16]  S. Stasheff,et al.  Induction of epileptiform activity in hippocampal slices by trains of electrical stimuli , 1985, Brain Research.

[17]  Wilkie A. Wilson,et al.  Magnesium-free medium activates seizure-like events in the rat hippocampal slice , 1986, Brain Research.

[18]  A Konnerth,et al.  Nonsynaptic epileptogenesis in the mammalian hippocampus in vitro. II. Role of extracellular potassium. , 1986, Journal of neurophysiology.

[19]  S. Kogure Simultaneous recordings from two types of hippocampal nonpyramidal cells during electrically induced paroxysmal discharges , 1987, Experimental Neurology.

[20]  Lai-Wo Stan Leung,et al.  Hippocampal electrical activity following local tetanization. I. Afterdischarges , 1987, Brain Research.

[21]  R. Dingledine,et al.  Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. , 1988, Journal of neurophysiology.

[22]  J. Cavazos,et al.  Synaptic reorganization in the hippocampus induced by abnormal functional activity. , 1988, Science.

[23]  R. S. Sloviter Calcium‐binding protein (calbindin‐D28k) and parvalbumin immunocytochemistry: Localization in the rat hippocampus with specific reference to the selective vulnerability of hippocampal neurons to seizure activity , 1989, The Journal of comparative neurology.

[24]  D. Amaral,et al.  The three-dimensional organization of the hippocampal formation: A review of anatomical data , 1989, Neuroscience.

[25]  J. Pretorius,et al.  Glutamate decarboxylase-immunoreactive neurons are preserved in human epileptic hippocampus , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  G. Buzsáki,et al.  Neuronal activity in the subcortically denervated hippocampus: A chronic model for epilepsy , 1989, Neuroscience.

[27]  B. Gähwiler,et al.  Activity-dependent disinhibition. I. Repetitive stimulation reduces IPSP driving force and conductance in the hippocampus in vitro. , 1989, Journal of neurophysiology.

[28]  F. H. Lopes da Silva,et al.  The role of hippocampal commissures in the interhemispheric transfer of epileptiform afterdischarges in the rat: a study using linear and non-linear regression analysis. , 1990, Electroencephalography and clinical neurophysiology.

[29]  F. D. Silva,et al.  Cellular and Network Mechanisms in the Kindling Model of Epilepsy: The Role of GABAergic Inhibition and the Emergence of Strange Attractors , 1990 .

[30]  R. Wong,et al.  Excitatory synaptic responses mediated by GABAA receptors in the hippocampus , 1991, Science.

[31]  R. Traub,et al.  Neuronal Networks of the Hippocampus , 1991 .

[32]  R. S. Sloviter,et al.  Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: The “dormant basket cell” hypothesis and its possible relevance to temporal lobe epilepsy , 1991, Hippocampus.

[33]  R. S. Sloviter Feedforward and feedback inhibition of hippocampal principal cell activity evoked by perforant path stimulation: GABA‐mediated mechanisms that regulate excitability In Vivo , 1991, Hippocampus.

[34]  G. Buzsáki,et al.  Emergence and propagation of interictal spikes in the subcortically denervated hippocampus , 1991, Hippocampus.

[35]  W. Kamphuis,et al.  Current source density of sustained potential shifts associated with electrographic seizures and with spreading depression in rat hippocampus , 1992, Brain Research.

[36]  P. Schwartzkroin,et al.  Mossy cell axonal projections to the dentate gyrus molecular layer in the rat hippocampal slice , 1992, Hippocampus.

[37]  J. L. Stringer,et al.  Reverberatory seizure discharges in hippocampal-parahippocampal circuits , 1992, Experimental Neurology.

[38]  R. Llinás,et al.  Role of the hippocampal-entorhinal loop in temporal lobe epilepsy: extra- and intracellular study in the isolated guinea pig brain in vitro , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[39]  Influence of electrical stimulus parameters on afterdischarge thresholds in the rat hippocampus , 1992, Epilepsy Research.

[40]  J. L. Stringer,et al.  Bilateral maximal dentate activation is critical for the appearance of an afterdischarge in the dentate gyrus , 1992, Neuroscience.

[41]  R. Miles,et al.  Metabotropic glutamate receptors mediate a post‐tetanic excitation of guinea‐pig hippocampal inhibitory neurones. , 1993, The Journal of physiology.

[42]  Y. Ben-Ari,et al.  Hippocampal inhibitory interneurons are functionally disconnected from excitatory inputs by anoxia. , 1993, Journal of Neurophysiology.

[43]  Roland S. G. Jones Entorhinal-hippocampal connections: a speculative view of their function , 1993, Trends in Neurosciences.

[44]  I. Módy The Molecular Basis of Kindling , 1993, Brain pathology.

[45]  G. Buzsáki,et al.  Four modified silver methods for thick sections of formaldehyde-fixed mammalian central nervous tissue: ‘dark’ neurons, perikarya of all neurons, microglial cells and capillaries , 1993, Journal of Neuroscience Methods.

[46]  A. Katchman,et al.  Mechanism of early anoxia-induced suppression of the GABAA-mediated inhibitory postsynaptic current. , 1994, Journal of neurophysiology.

[47]  C. McBain,et al.  Hippocampal inhibitory neuron activity in the elevated potassium model of epilepsy. , 1994, Journal of neurophysiology.

[48]  P. Somogyi,et al.  Physiological properties of anatomically identified axo-axonic cells in the rat hippocampus. , 1994, Journal of neurophysiology.

[49]  P. Somogyi,et al.  The hippocampal CA3 network: An in vivo intracellular labeling study , 1994, The Journal of comparative neurology.

[50]  H. Scharfman EPSPs of dentate gyrus granule cells during epileptiform bursts of dentate hilar "mossy" cells and area CA3 pyramidal cells in disinhibited rat hippocampal slices , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[51]  JO McNamara,et al.  Cellular and molecular basis of epilepsy , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[52]  G. Somjen,et al.  Spreading depression of Leão: 50 years since a seminal discovery. , 1994, Journal of neurophysiology.

[53]  H. Scharfman,et al.  Synchronization of area CA3 hippocampal pyramidal cells and non-granule cells of the dentate gyrus in bicuculline-treated rat hippocampal slices , 1994, Neuroscience.

[54]  K. Staley,et al.  Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors , 1995, Science.

[55]  R. Dingledine,et al.  Synaptic input from CA3 pyramidal cells to dentate basket cells in rat hippocampus. , 1995, The Journal of physiology.

[56]  G. Buzsáki,et al.  Hippocampal CA1 interneurons: an in vivo intracellular labeling study , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[57]  G. Buzsáki,et al.  Intracellular correlates of hippocampal theta rhythm in identified pyramidal cells, granule cells, and basket cells , 1995, Hippocampus.

[58]  G Buzsáki,et al.  Dentate EEG spikes and associated interneuronal population bursts in the hippocampal hilar region of the rat. , 1995, Journal of neurophysiology.

[59]  G. Buzsáki,et al.  Gamma (40-100 Hz) oscillation in the hippocampus of the behaving rat , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[60]  Dennis D. Spencer,et al.  Hippocampal GABA transporter function in temporal-lobe epilepsy , 1995, Nature.

[61]  H. Scharfman,et al.  Conditions required for polysynaptic excitation of dentate granule cells by area CA3 pyramidal cells in rat hippocampal slices , 1996, Neuroscience.