The Use of Functionalized Silk Fibroin Films as a Platform for Optical Diffraction‐Based Sensing Applications

A set of biocompatible, biodegradable, and biofunctionalizable diffractive optical elements (DOEs) using silk proteins as the building materials is reported. The diffraction pattern of a DOE is highly sensitive to the surrounding environment and the structural integrity, offering numerous opportunities for biosensing applications.

[1]  Hu Tao,et al.  Silk Materials – A Road to Sustainable High Technology , 2012, Advanced materials.

[2]  Eduard Reithmeier,et al.  Flexible, fast, and low-cost production process for polymer based diffractive optics. , 2015, Optics express.

[3]  R. Weissleder,et al.  Advancing biomedical imaging , 2015, Proceedings of the National Academy of Sciences.

[4]  David L. Kaplan,et al.  A new route for silk , 2008 .

[5]  Michael P Schaub,et al.  Molded Optics: Design and Manufacture , 2011 .

[6]  R. Osellame,et al.  Optofluidics for Biophotonic Applications , 2012, IEEE Photonics Journal.

[7]  Bochu Wang,et al.  Biodegradation of Silk Biomaterials , 2009, International journal of molecular sciences.

[8]  David L Kaplan,et al.  Antibiotic‐Releasing Silk Biomaterials for Infection Prevention and Treatment , 2013, Advanced functional materials.

[9]  David L Kaplan,et al.  Effect of silk protein processing on drug delivery from silk films. , 2013, Macromolecular bioscience.

[10]  J. Li,et al.  Biodegradation behavior of silk biomaterials , 2014 .

[11]  Sergio Fantini,et al.  Implantable, multifunctional, bioresorbable optics , 2012, Proceedings of the National Academy of Sciences.

[12]  Wendong Zhang,et al.  Progress of new label-free techniques for biosensors: a review , 2015, Critical reviews in biotechnology.

[13]  J. Pipper,et al.  Immobilization of antibodies in micropatterns for cell detection by optical diffraction , 2000 .

[14]  F. Omenetto,et al.  Cashmere-derived keratin for device manufacturing on the micro- and nanoscale , 2015 .

[15]  D. Kaplan,et al.  Materials fabrication from Bombyx mori silk fibroin , 2011, Nature Protocols.

[16]  David L Kaplan,et al.  Physical and chemical aspects of stabilization of compounds in silk , 2012, Biopolymers.

[17]  N. Kumawat,et al.  Diffractive Optical Analysis for Refractive Index Sensing using Transparent Phase Gratings , 2015, Scientific Reports.

[18]  David L. Kaplan,et al.  Fabrication of Silk Microneedles for Controlled‐Release Drug Delivery , 2012 .

[19]  John E. Sipe,et al.  Porous silicon structures for low-cost diffraction-based biosensing , 2010 .

[20]  S. Kundu,et al.  Biopatterning of Silk Proteins for Soft Micro-optics. , 2015, ACS applied materials & interfaces.