Closed form expression for the inverse cumulative distribution function of Nakagami distribution
暂无分享,去创建一个
[1] A. Mishra,et al. Maximum likelihood estimate of parameters of Nakagami-m distribution , 2012, 2012 International Conference on Communications, Devices and Intelligent Systems (CODIS).
[2] Dazhuan Xu,et al. Highly efficient rejection method for generating Nakagami-m sequences , 2011 .
[3] Tung-Sang Ng,et al. A simulation model for Nakagami-m fading channels, m<1 , 2000, IEEE Trans. Commun..
[4] P. Shankar. Ultrasonic tissue characterization using a generalized Nakagami model , 2001, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[5] Norman C. Beaulieu,et al. Efficient Nakagami-m fading channel Simulation , 2005, IEEE Transactions on Vehicular Technology.
[6] Yasin Kabalci. On the Nakagami-m Inverse Cumulative Distribution Function: Closed-Form Expression and Its Optimization by Backtracking Search Optimization Algorithm , 2016, Wirel. Pers. Commun..
[7] M.D. Yacoub,et al. The $\alpha$-$\mu$ Distribution: A Physical Fading Model for the Stacy Distribution , 2007, IEEE Transactions on Vehicular Technology.
[8] M. Yacoub,et al. On higher order statistics of the Nakagami-m distribution , 1999 .
[9] Hilary I. Okagbue,et al. Ordinary differential equations of probability functions of convoluted distributions , 2018, International Journal of ADVANCED AND APPLIED SCIENCES.
[10] Gábor Jeney,et al. Coverage analysis for macro users in two-tier Rician faded LTE/small-cell networks , 2015, Wirel. Networks.
[11] Yik-Chung Wu,et al. Exact Outage Probability of Dual-Hop CSI-Assisted AF Relaying Over Nakagami-$m$ Fading Channels , 2012, IEEE Transactions on Signal Processing.
[12] Zhiyong Feng,et al. Simultaneous wireless information and power transfer for relay assisted energy harvesting network , 2016, Wireless Networks.
[13] Yuefeng Ji,et al. Collision analysis of CSMA/CA based MAC protocol for duty cycled WBANs , 2017, Wirel. Networks.
[14] Aditya Trivedi,et al. Outage and energy efficiency analysis for cognitive based heterogeneous cellular networks , 2016, Wireless Networks.
[15] Francisco Louzada,et al. The Inverse Nakagami-m Distribution: A Novel Approach in Reliability , 2018, IEEE Transactions on Reliability.
[16] Radovan Jirik,et al. Estimator Comparison of the Nakagami-m Parameter and its Application in Echocardiography , 2004 .
[17] M. Nakagami. The m-Distribution—A General Formula of Intensity Distribution of Rapid Fading , 1960 .
[18] David Irvine Laurensen. Indoor radio channel propagation modelling by ray tracing techniques , 1994 .
[19] M. Marsden,et al. Cubic spline interpolation of continuous functions , 1974 .
[20] Susmita Das,et al. Reliable communication in UWB body area networks using multiple hybrid relays , 2017, Wirel. Networks.
[21] Asad Munir,et al. Dependency without copulas or ellipticity , 2009 .
[22] Yasin Kabalci,et al. An improved approximation for the Nakagami-m inverse CDF using artificial bee colony optimization , 2018, Wirel. Networks.
[23] Norman C. Beaulieu,et al. Maximum-likelihood based estimation of the Nakagami m parameter , 2001, IEEE Communications Letters.
[24] Cecil Hastings,et al. Approximations for digital computers , 1955 .
[25] Lei Shi,et al. A New Statistical WRELAX Algorithm Under Nakagami Multipath Channel Based on Delay Power Spectrum Characteristic , 2015, Wirel. Pers. Commun..
[26] Farhad Bahadori-Jahromi,et al. Joint design of physical and MAC layer by applying the constellation rearrangement technique in cooperative multi-hop networks , 2017, Wirel. Networks.
[27] Yan Gao,et al. Channel estimation for AF relaying using ML and MAP , 2017, Wireless Networks.
[28] Ghanshyam Singh,et al. Channel capacity in fading environment with CSI and interference power constraints for cognitive radio communication system , 2014, Wireless Networks.
[29] Yao Ma,et al. A Method for Simulating Complex Nakagami Fading Time Series With Nonuniform Phase and Prescribed Autocorrelation Characteristics , 2010, IEEE Transactions on Vehicular Technology.
[30] B. Goldberg,et al. Classification of ultrasonic B-mode images of breast masses using Nakagami distribution , 2001, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[31] Okagbue et al.,et al. Quantile mechanics: Issues arising from critical review , 2019, International Journal of ADVANCED AND APPLIED SCIENCES.
[32] R. Hughey,et al. A survey and comparison of methods for estimating extreme right tail-area quantiles , 1991 .
[33] Norman C. Beaulieu,et al. Simple Efficient Methods for Generating Independent and Bivariate Nakagami- $m$ Fading Envelope Samples , 2007, IEEE Transactions on Vehicular Technology.
[34] Do Le Minh,et al. A New Fixed Point Iteration to Find Percentage Points for Distributions on the Positive Axis , 2010 .
[35] A. McNeil,et al. Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach , 2000 .
[36] Luca Martino,et al. Almost rejectionless sampling from Nakagami-m distributions (m⩾1) , 2012 .
[37] On the Beta-Nakagami Distribution , 2013 .
[38] Mehmet Bilim,et al. A New Nakagami-m Inverse CDF Approximation Based on the Use of Genetic Algorithm , 2015, Wirel. Pers. Commun..
[39] Matthias Patzold,et al. Mobile Fading Channels: Modelling,Analysis and Simulation , 2001 .
[40] Hilary I. Okagbue,et al. Closed Form Expressions for the Quantile Function of the Erlang Distribution Used in Engineering Models , 2019, Wirel. Pers. Commun..
[41] Ghanshyam Singh,et al. Capacity in fading environment based on soft sensing information under spectrum sharing constraints , 2017, Wirel. Networks.
[42] Ümit Aygölü,et al. Performance analysis of a multihop relay network using distributed Alamouti code , 2015, Wirel. Networks.