Inference of biochemical network models in S-system using multiobjective optimization approach

MOTIVATION The inference of biochemical networks, such as gene regulatory networks, protein-protein interaction networks, and metabolic pathway networks, from time-course data is one of the main challenges in systems biology. The ultimate goal of inferred modeling is to obtain expressions that quantitatively understand every detail and principle of biological systems. To infer a realizable S-system structure, most articles have applied sums of magnitude of kinetic orders as a penalty term in the fitness evaluation. How to tune a penalty weight to yield a realizable model structure is the main issue for the inverse problem. No guideline has been published for tuning a suitable penalty weight to infer a suitable model structure of biochemical networks. RESULTS We introduce an interactive inference algorithm to infer a realizable S-system structure for biochemical networks. The inference problem is formulated as a multiobjective optimization problem to minimize simultaneously the concentration error, slope error and interaction measure in order to find a suitable S-system model structure and its corresponding model parameters. The multiobjective optimization problem is solved by the epsilon-constraint method to minimize the interaction measure subject to the expectation constraints for the concentration and slope error criteria. The theorems serve to guarantee the minimum solution for the epsilon-constrained problem to achieve the minimum interaction network for the inference problem. The approach could avoid assigning a penalty weight for sums of magnitude of kinetic orders.

[1]  Feng-Sheng Wang,et al.  Hybrid method of evolutionary algorithms for static and dynamic optimization problems with application to a fed-batch fermentation process , 1999 .

[2]  Eberhard O Voit,et al.  Theoretical Biology and Medical Modelling Identification of Metabolic System Parameters Using Global Optimization Methods , 2022 .

[3]  Douglas B. Kell,et al.  Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation , 1998, Bioinform..

[4]  Feng-Sheng Wang,et al.  Evolutionary optimization with data collocation for reverse engineering of biological networks , 2005, Bioinform..

[5]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[6]  Feng-Sheng Wang,et al.  Multiobjective parameter estimation problems of fermentation processes using a high ethanol tolerance yeast , 2000 .

[7]  H. Iba,et al.  Reverse engineering genetic networks using evolutionary computation. , 2005, Genome informatics. International Conference on Genome Informatics.

[8]  W. S. Hlavacek,et al.  Rules for coupled expression of regulator and effector genes in inducible circuits. , 1996, Journal of molecular biology.

[9]  Shuhei Kimura,et al.  Inference of S-system models of genetic networks using a cooperative coevolutionary algorithm , 2005, Bioinform..

[10]  Masatoshi Sakawa,et al.  Fuzzy Sets and Interactive Multiobjective Optimization , 1993 .

[11]  Jonas S. Almeida,et al.  Decoupling dynamical systems for pathway identification from metabolic profiles , 2004, Bioinform..

[12]  Eberhard O Voit,et al.  Theoretical Biology and Medical Modelling , 2022 .

[13]  Feng-Sheng Wang,et al.  A modified collocation method for solving differential-algebraic equations , 2000, Appl. Math. Comput..

[14]  Vasilios Manousiouthakis,et al.  KINETIC MODEL REDUCTION USING GENETIC ALGORITHMS , 1998 .

[15]  Peter Schlattmann,et al.  Theory and Algorithms , 2009 .

[16]  Douglas B. Kell,et al.  Multiobjective Optimization in Bioinformatics and Computational Biology , 2007, IEEE ACM Trans. Comput. Biol. Bioinform..

[17]  S. Kimura,et al.  Inference of S-system Models of Genetic Networks from Noisy Time-series Data , 2004 .

[18]  Bor-Sen Chen,et al.  Quantitative inference of dynamic regulatory pathways via microarray data , 2004, BMC Bioinformatics.

[19]  T. Marshall,et al.  Common angiotensin receptor blockers may directly modulate the immune system via VDR, PPAR and CCR2b , 2006, Theoretical Biology and Medical Modelling.

[20]  Eberhard O Voit,et al.  Neural-network-based parameter estimation in S-system models of biological networks. , 2003, Genome informatics. International Conference on Genome Informatics.

[21]  Prospero C. Naval,et al.  Parameter estimation using Simulated Annealing for S-system models of biochemical networks , 2007, Bioinform..

[22]  Shinn-Ying Ho,et al.  Evolutionary divide-and-conquer approach to inferring S-system models of genetic networks , 2005, 2005 IEEE Congress on Evolutionary Computation.

[23]  Masaru Tomita,et al.  Dynamic modeling of genetic networks using genetic algorithm and S-system , 2003, Bioinform..

[24]  Masatoshi Sakawa Fuzzy Nonlinear Programming , 1993 .

[25]  Carmen G. Moles,et al.  Parameter estimation in biochemical pathways: a comparison of global optimization methods. , 2003, Genome research.

[26]  Jian Su,et al.  Recognition of protein/gene names from text using an ensemble of classifiers , 2005, BMC Bioinformatics.

[27]  B. Ingalls,et al.  Autonomously oscillating biochemical systems: parametric sensitivity of extrema and period. , 2004, Systems biology.

[28]  Feng-Sheng Wang,et al.  Hybrid Differential Evolution for Problems of Kinetic Parameter Estimation and Dynamic Optimization of an Ethanol Fermentation Process , 2001 .

[29]  Takanori Ueda,et al.  Inference of Genetic Network Using the Expression Profile Time Course Data of Mouse P19 Cells , 2002 .

[30]  Jonas S. Almeida,et al.  Dynamic Profiling and Canonical Modeling , 2003 .

[31]  Masahiro Okamoto,et al.  Development of a System for the Inference of Large Scale Genetic Networks , 2000, Pacific Symposium on Biocomputing.

[32]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .