GLOBAL WEAK SOLUTIONS FOR A VLASOV–FOKKER–PLANCK/NAVIER–STOKES SYSTEM OF EQUATIONS

We establish the existence of a weak solutions for a coupled system of kinetic and fluid equations. More precisely, we consider a Vlasov–Fokker–Planck equation coupled to compressible Navier–Stokes equation via a drag force. The fluid is assumed to be barotropic with γ-pressure law (γ > 3/2). The existence of weak solutions is proved in a bounded domain of ℝ3 with homogeneous Dirichlet conditions on the fluid velocity field and Dirichlet or reflection boundary conditions on the kinetic distribution function.

[1]  D. Gidaspow Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions , 1994 .

[2]  Kamel Hamdache,et al.  Global existence and large time behaviour of solutions for the Vlasov-Stokes equations , 1998 .

[3]  François Bouchut,et al.  Existence and Uniqueness of a Global Smooth Solution for the Vlasov-Poisson-Fokker-Planck System in Three Dimensions , 1993 .

[4]  Laurent Desvillettes,et al.  COUPLING EULER AND VLASOV EQUATIONS IN THE CONTEXT OF SPRAYS: THE LOCAL-IN-TIME, CLASSICAL SOLUTIONS , 2006 .

[5]  Stéphane Mischler,et al.  On The Trace Problem For Solutions Of The Vlasov Equation , 1999 .

[6]  F. Williams Spray Combustion and Atomization , 1958 .

[7]  Horng-Tzer Yau,et al.  Relative entropy and hydrodynamics of Ginzburg-Landau models , 1991 .

[8]  Thierry Goudon,et al.  HYDRODYNAMIC LIMIT FOR THE VLASOV–POISSON–FOKKER–PLANCK SYSTEM: ANALYSIS OF THE TWO-DIMENSIONAL CASE , 2005 .

[9]  Antoine Mellet,et al.  Asymptotic Analysis for a Vlasov-Fokker-Planck/ Compressible Navier-Stokes System of Equations , 2008 .

[10]  J. Carrillo Global weak solutions for the initial–boundary-value problems Vlasov–Poisson–Fokker–Planck System , 1998 .

[11]  R. Illner,et al.  The mathematical theory of dilute gases , 1994 .

[12]  Kevin P. Galvin,et al.  Continuous differential sedimentation of a binary suspension , 1996 .

[13]  Alexis Vasseur,et al.  From Kinetic Equations to Multidimensional Isentropic Gas Dynamics Before Shocks , 2005, SIAM J. Math. Anal..

[14]  Antoine Mellet,et al.  Uniqueness and semigroup for the Vlasov equation with elastic-diffusive reflexion boundary conditions , 2004, Appl. Math. Lett..

[15]  P. Lions Mathematical topics in fluid mechanics , 1996 .

[16]  C. Dafermos The second law of thermodynamics and stability , 1979 .

[17]  Juan Soler,et al.  Asymptotic Behavior of an Initial-Boundary Value Problem for the Vlasov-Poisson-Fokker-Planck System , 1997, SIAM J. Appl. Math..

[18]  Stéphane Mischler,et al.  On the Initial Boundary Value Problem for the Vlasov–Poisson–Boltzmann System , 2000 .

[19]  D. Gidaspow Multiphase Flow and Fluidization , 1994 .

[20]  Raimund Bürger,et al.  Strongly Degenerate Parabolic-Hyperbolic Systems Modeling Polydisperse Sedimentation with Compression , 2003, SIAM J. Appl. Math..

[21]  F. Spellman Combustion Theory , 2020 .

[22]  Thierry Goudon,et al.  Stability and Asymptotic Analysis of a Fluid-Particle Interaction Model , 2006 .

[23]  Eduard Feireisl,et al.  On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not square integrable , 2001 .

[24]  K. Hamdache Initial-Boundary value problems for the Boltzmann equation: Global existence of weak solutions , 1992 .

[25]  W. K. Sartory Three-component analysis of blood sedimentation by the method of characteristics , 1977 .