Reconciling simplicity and likelihood principles in perceptual organization.

Two principles of perceptual organization have been proposed. The likelihood principle, following H. L. F. von Helmholtz (1910/1962), proposes that perceptual organization is chosen to correspond to the most likely distal layout. The simplicity principle, following Gestalt psychology, suggests that perceptual organization is chosen to be as simple as possible. The debate between these two views has been a central topic in the study of perceptual organization. Drawing on mathematical results in A. N. Kolmogorov's (1965) complexity theory, the author argues that simplicity and likelihood are not in competition, but are identical. Various implications for the theory of perceptual organization and psychology more generally are outlined.

[1]  R. Hetherington The Perception of the Visual World , 1952 .

[2]  H A SIMON,et al.  HUMAN ACQUISITION OF CONCEPTS FOR SEQUENTIAL PATTERNS. , 1963, Psychological review.

[3]  Nick Chater,et al.  A rational analysis of the selection task as optimal data selection. , 1994 .

[4]  Victor Pambuccian,et al.  Simplicity , 1988, Notre Dame J. Formal Log..

[5]  F. Restle Coding theory of the perception of motion configurations. , 1979, Psychological review.

[6]  David H. Wolpert,et al.  The Mathematics of Generalization: The Proceedings of the SFI/CNLS Workshop on Formal Approaches to Supervised Learning , 1994 .

[7]  K. Koffka Principles Of Gestalt Psychology , 1936 .

[8]  J. Beck Organization and representation in perception , 1982 .

[9]  W. R. Garner,et al.  Response uncertainty and perceptual difficulty of auditory temporal patterns , 1966 .

[10]  L. Kaufman,et al.  Handbook of Perception and Human Performance. Volume 2. Cognitive Processes and Performance , 1994 .

[11]  W. R. Garner Uncertainty and structure as psychological concepts , 1975 .

[12]  P. N. JOHNSON-LAIRD,et al.  Memory for Syntax , 1970, Nature.

[13]  S. S. Wilks,et al.  Probability, statistics and truth , 1939 .

[14]  Gregory J. Chaitin,et al.  On the Length of Programs for Computing Finite Binary Sequences , 1966, JACM.

[15]  F. Attneave,et al.  The determination of perceived tridimensional orientation by minimum criteria , 1969 .

[16]  I. Rock The Logic of Perception , 1983 .

[17]  Frank Restle,et al.  Theory of Serial Pattern Learning: Structural Trees. , 1970 .

[18]  E. Leeuwenberg Quantitative specification of information in sequential patterns. , 1969, Psychological review.

[19]  George Boolos,et al.  Computability and logic , 1974 .

[20]  A. W. Melton,et al.  Coding Processes in Human Memory. , 1973 .

[21]  James H. Moor,et al.  Knowledge and the Flow of Information. , 1982 .

[22]  Paul C. Vitz,et al.  A coded element model of the perceptual processing of sequential stimuli. , 1969 .

[23]  Ray J. Solomonoff,et al.  A Formal Theory of Inductive Inference. Part II , 1964, Inf. Control..

[24]  Daniel G. Bobrow,et al.  SOME PRINCIPLES OF MEMORY SCHEMATA , 1975 .

[25]  Ray J. Solomonoff,et al.  Complexity-based induction systems: Comparisons and convergence theorems , 1978, IEEE Trans. Inf. Theory.

[26]  J. Gibson The Senses Considered As Perceptual Systems , 1967 .

[27]  Nick Chater,et al.  A Rational Analysis of the Selection Task II: Abstract Materials , 1998 .

[28]  William P. Alston,et al.  Knowledge and the Flow of Information , 1985 .

[29]  E. Leeuwenberg,et al.  Coding theory of visual pattern completion. , 1981, Journal of experimental psychology. Human perception and performance.

[30]  D. Mumford Pattern theory: a unifying perspective , 1996 .

[31]  C. S. Wallace,et al.  Estimation and Inference by Compact Coding , 1987 .

[32]  K. Holyoak,et al.  Induction of category distributions: a framework for classification learning. , 1984, Journal of experimental psychology. Learning, memory, and cognition.

[33]  E. Leeuwenberg A perceptual coding language for visual and auditory patterns. , 1971, The American journal of psychology.

[34]  HighWire Press Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.

[35]  Edwin P. D. Pednault,et al.  Some Experiments in Applying Inductive Inference Principles to Surface Reconstruction , 1989, IJCAI.

[36]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[37]  A. Kolmogorov Three approaches to the quantitative definition of information , 1968 .

[38]  W Reichardt,et al.  Visual control of orientation behaviour in the fly: Part I. A quantitative analysis , 1976, Quarterly Reviews of Biophysics.

[39]  David Lindley,et al.  Bayesian Statistics, a Review , 1987 .

[40]  Joseph J. Atick,et al.  Towards a Theory of Early Visual Processing , 1990, Neural Computation.

[41]  Nick Chater,et al.  Information and information processing , 1990 .

[42]  D. Perkins Visual discrimination between rectangular and nonrectangular parallelopipeds , 1972 .

[43]  D. W. D.Sc.,et al.  XLII. On certain fundamental principles of scientific inquiry , 1921 .

[44]  Geoffrey E. Hinton Some Demonstrations of the Effects of Structural Descriptions in Mental Imagery , 1979, Cogn. Sci..

[45]  E. Brunswik Perception and the Representative Design of Psychological Experiments , 1957 .

[46]  A. Norman Redlich,et al.  Redundancy Reduction as a Strategy for Unsupervised Learning , 1993, Neural Computation.

[47]  R. Zemel A minimum description length framework for unsupervised learning , 1994 .

[48]  J. R. Pomerantz,et al.  THEORETICAL APPROACHES TO PERCEPTUAL ORGANIZATION Simplicity and Likelihood Principles , 1986 .

[49]  W. R. Garner The Processing of Information and Structure , 1974 .

[50]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 1997, Texts in Computer Science.

[51]  David Lindley,et al.  Logical foundations of probability , 1951 .

[52]  J. Hochberg,et al.  A quantitative approach to figural "goodness". , 1953, Journal of experimental psychology.

[53]  Peter Urbach,et al.  Scientific Reasoning: The Bayesian Approach , 1989 .

[54]  George A. Miller,et al.  Language and Communication , 1951 .

[55]  J. Rissanen Stochastic Complexity in Statistical Inquiry Theory , 1989 .

[56]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[57]  P. Odifreddi Classical recursion theory , 1989 .

[58]  I. Rock,et al.  An introduction to perception , 1975 .

[59]  Hermann von Helmholtz,et al.  Treatise on Physiological Optics , 1962 .

[60]  L. Kaufman,et al.  Handbook of perception and human performance , 1986 .

[61]  Philip N. Johnson-Laird,et al.  Thinking; Readings in Cognitive Science , 1977 .

[62]  Ulf Grenander,et al.  Lectures in pattern theory , 1978 .

[63]  Colin Blakemore,et al.  Vision: Coding and Efficiency , 1991 .

[64]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[65]  F. Attneave Applications of information theory to psychology: A summary of basic concepts, methods, and results. , 1961 .

[66]  Ernst Mach,et al.  The analysis of sensations and the relation of the physical to the psychical , 1914, The Mathematical Gazette.

[67]  Herbert A. Simon,et al.  Complexity and the representation of patterned sequences of symbols. , 1972 .

[68]  W. Epstein,et al.  The status of the minimum principle in the theoretical analysis of visual perception. , 1985, Psychological bulletin.

[69]  L. Levin,et al.  THE COMPLEXITY OF FINITE OBJECTS AND THE DEVELOPMENT OF THE CONCEPTS OF INFORMATION AND RANDOMNESS BY MEANS OF THE THEORY OF ALGORITHMS , 1970 .

[70]  S. Gunnar O. Johansson,et al.  Configurations in event perception : an experimental study , 1951 .

[71]  R. Jeffrey The Logic of Decision , 1984 .

[72]  E. Reed The Ecological Approach to Visual Perception , 1989 .

[73]  Rudolf Carnap,et al.  The continuum of inductive methods , 1952 .

[74]  W. Pitts,et al.  What the Frog's Eye Tells the Frog's Brain , 1959, Proceedings of the IRE.

[75]  Joseph J. Atick,et al.  What Does the Retina Know about Natural Scenes? , 1992, Neural Computation.

[76]  W Reichardt,et al.  Visual control of orientation behaviour in the fly: Part II. Towards the underlying neural interactions , 1976, Quarterly Reviews of Biophysics.

[77]  J. Colquhoun,et al.  A matter of chance. , 1992, Australian family physician.

[78]  D. Campbell,et al.  The influence of culture on visual perception , 1967 .

[79]  John R. Anderson The Adaptive Character of Thought , 1990 .

[80]  C. S. Wallace,et al.  An Information Measure for Classification , 1968, Comput. J..

[81]  H. B. Barlow,et al.  Finding Minimum Entropy Codes , 1989, Neural Computation.

[82]  F Boselie,et al.  Against the likelihood principle in visual form perception. , 1988, Psychological review.

[83]  R. Fisher,et al.  On the Mathematical Foundations of Theoretical Statistics , 1922 .

[84]  Yemima Ben-menahem The inference to the best explanation , 1990 .

[85]  Ronald L. Rivest,et al.  Inferring Decision Trees Using the Minimum Description Length Principle , 1989, Inf. Comput..

[86]  J. Gerard Wolff,et al.  Language acquisition, data compression and generalization , 1982 .

[87]  A. Wald,et al.  Probability, statistics and truth , 1939 .

[88]  H. Jeffreys A Treatise on Probability , 1922, Nature.

[89]  Bruno de Finetti,et al.  Probability, induction and statistics , 1972 .

[90]  Roger C. Schank,et al.  SCRIPTS, PLANS, GOALS, AND UNDERSTANDING , 1988 .

[91]  Marvin Minsky,et al.  Computation : finite and infinite machines , 2016 .

[92]  P. Horwich Probability and Evidence , 1972 .

[93]  Ming Li,et al.  Computational Machine Learning in Theory and Praxis , 1995, Computer Science Today.

[94]  F. Attneave Some informational aspects of visual perception. , 1954, Psychological review.