The genetic architecture of type 2 diabetes
暂无分享,去创建一个
Stephen C. J. Parker | Taylor J. Maxwell | Mauricio O. Carneiro | Tanya M. Teslovich | Kyle J. Gaulton | Nicholette D. Palmer | Davis J. McCarthy | Y. J. Kim | P. Donnelly | P. Elliott | J. Danesh | L. Liang | C. Gieger | W. Rathmann | T. Spector | A. Peters | R. Mägi | E. Mihailov | M. McCarthy | P. Deloukas | E. Zeggini | A. Morris | F. Hu | M. DePristo | E. Banks | R. Poplin | J. Maguire | C. Hartl | M. Rivas | T. Fennell | S. Gabriel | M. Daly | G. Abecasis | H. Kang | G. McVean | E. Lander | K. Stirrups | D. Altshuler | V. Salomaa | T. Hansen | O. Pedersen | N. Grarup | T. Jørgensen | I. Brandslund | C. Lindgren | L. Groop | A. Farmer | J. Levy | M. Laakso | F. Collins | K. Strauch | M. Boehnke | B. Neale | Joshua D. Smith | M. Mangino | T. Frayling | J. Perry | A. Hattersley | M. Walker | C. Groves | T. Ferreira | Y. Teo | R. Onofrio | R. Bergman | T. Wieland | S. Purcell | T. Green | George B. Grant | N. Cox | E. Gamazon | H. Im | R. Duggirala | J. Blangero | T. Wong | K. Jablonski | D. Prabhakaran | E. Tai | J. Justesen | J. Chan | W. So | R. Ma | K. Small | T. Meitinger | T. Strom | S. O’Rahilly | J. Flannick | A. Metspalu | T. Esko | M. Sandhu | L. Milani | E. Ingelsson | C. Meisinger | L. Scott | K. Mohlke | L. Bonnycastle | H. Stringham | P. Chines | A. Jackson | A. Swift | N. Narisu | R. Watanabe | L. Kinnunen | J. Tuomilehto | K. Owen | A. Morris | A. Doney | B. Voight | V. Lyssenko | N. Burtt | J. Florez | B. Isomaa | O. Melander | P. Nilsson | M. Orho-Melander | T. Tuomi | R. Sladek | B. Balkau | P. Froguel | T. Illig | L. Lind | N. Tandon | R. DeFronzo | G. Buck | R. Rauramaa | A. Syvänen | J. Meigs | N. Wareham | Jianjun Liu | Han Chen | J. Dupuis | M. Horikoshi | A. Mahajan | C. Ladenvall | J. Ried | H. Grallert | M. Müller-Nurasyid | I. Prokopenko | P. Franks | B. Glaser | Y. S. Cho | Jong-Young Lee | B. Han | D. Bharadwaj | S. Ebrahim | M. Roden | C. Herder | W. Lim | K. Shakir | D. Saleheen | James G. Wilson | A. Gloyn | P. Njølstad | T. Schwarzmayr | J. Kooner | G. Jun | O. Gottesman | E. Bottinger | R. Pearson | I. Barroso | J. Howson | N. Robertson | Wei Zhao | L. Lannfelt | Ching-Yu Cheng | X. Sim | S. Musani | A. Manning | R. Scott | A. Stančáková | T. V. Varga | Weihua Zhang | T. Aung | A. Correa | C. Khor | J. Kuusisto | C. Langenberg | B. Lehne | M. Loh | N. Palmer | W. Scott | D. Bowden | J. Chambers | B. Freedman | James G. Scott | K. Chia | M. Go | J. Bork-Jensen | R. Loos | Ashish Kumar | L. Yengo | D. Rybin | P. Fontanillas | A. Wood | Jason P. Carey | Jasmina Kravic | B. Thorand | J. Trakalo | C. Palmer | L. Qi | T. Lauritzen | D. Buck | J. Curran | L. Moutsianas | M. Griswold | A. Butterworth | C. Fuchsberger | H. Boeing | A. Linneberg | D. Palli | G. Surdulescu | M. Stitzel | R. Welch | C. Huth | U. Afzal | A. Locke | D. Pasko | V. Giedraitis | Yingchang Lu | H. Highland | M. Ng | C. Christensen | Mette Hollensted | M. Jørgensen | F. Karpe | J. Kriebel | M. Neville | O. Rolandsson | A. Gjesing | Sian-Tsung Tan | Jinyan Huang | J. Fadista | A. Käräjämäki | A. Rosengren | Y. Farjoun | T. Pollin | M. van de Bunt | Y. T. van der Schouw | Vineeta Agarwala | Pablo Cingolani | Clement Ma | T. Blackwell | N. Rayner | J. Fernandez Tajes | J. Huyghe | Jaehoon Lee | Yuhui Chen | J. Below | Peng Chen | N. Beer | A. Day-Williams | T. Fingerlin | Cheng Hu | Iksoo Huh | M. Ikram | Bong-Jo Kim | Yongkang Kim | Min-Seok Kwon | Juyoung Lee | Selyeong Lee | Keng-Han Lin | Yoshihiko Nagai | Xu Wang | Joon Yoon | N. Barzilai | C. Jenkinson | T. Kuulasmaa | H. Abboud | Phoenix Kwan | Heung Man Lee | S. Kwak | V. Lam | K. Park | C. Tam | D. Aguilar | R. Arya | E. Chan | C. Navarro | V. Farook | S. Fowler | D. Hale | P. Hicks | Satish Kumar | D. Thuillier | S. Puppala | H. Taylor | F. Thameem | G. Wilson | H. Koistinen | Liisa Hakaste | Dylan Hodgkiss | Q. Qi | C. Blancher | M. D. de Angelis | Jacquelyn Murphy | G. Chandak | D. Lehman | W. Jia | T. Park | G. Atzmon | G. Bell | C. Hanis | Mark Seielstad | Sharon P Fowler | N. Cox | T. Varga | K. Gaulton | D. Hodgkiss | Khalid Shakir | Y. Cho | S. Tan | A. Morris | Weihua Zhang | J. Scott | R. Watanabe | Wei Zhao | Narisu Narisu | Dorothée Thuillier | J. Kravic | T. Wong | J. Perry | R. Scott | A. Morris | João Fadista | R. Loos | Annemari Käräjämäki | R. Scott | M. McCarthy | T. Wong | P. Kwan | R. Scott | T. Wong | T. Hansen | Xu Wang | F. Hu | A. Peters | A. Jackson | Todd Green | M. McCarthy | T. Wong | Wei Zhao | A. Correa | C. H. Tam | C. Palmer | L. Moutsianas | Denis Rybin | W. Lim | A. Peters | T. Wong | P. Fontanillas | J. Chan | A. Morris
[1] D. Falconer. The inheritance of liability to certain diseases, estimated from the incidence among relatives , 1965 .
[2] W. R. Rice. A Consensus Combined P-Value Test and the Family-wide Significance of Component Tests , 1990 .
[3] D. Firth. Bias reduction of maximum likelihood estimates , 1993 .
[4] S. Baylin,et al. RREB1, a ras responsive element binding protein, maps to human chromosome 6p25. , 1997, Genomics.
[5] K. Roeder,et al. Genomic Control for Association Studies , 1999, Biometrics.
[6] Ahmed Mansouri,et al. Opposing actions of Arx and Pax4 in endocrine pancreas development. , 2003, Genes & development.
[7] Pablo Tamayo,et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.
[8] D. Reich,et al. Principal components analysis corrects for stratification in genome-wide association studies , 2006, Nature Genetics.
[9] P. Donnelly,et al. A new multipoint method for genome-wide association studies by imputation of genotypes , 2007, Nature Genetics.
[10] Jon Wakefield,et al. A Bayesian measure of the probability of false discovery in genetic epidemiology studies. , 2007, American journal of human genetics.
[11] Pall I. Olason,et al. A human phenome-interactome network of protein complexes implicated in genetic disorders , 2007, Nature Biotechnology.
[12] Simon C. Potter,et al. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls , 2007, Nature.
[13] B. Browning,et al. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. , 2007, American journal of human genetics.
[14] K. Shianna,et al. Long-range LD can confound genome scans in admixed populations. , 2008, American journal of human genetics.
[15] Joshua M. Korn,et al. Integrated genotype calling and association analysis of SNPs, common copy number polymorphisms and rare CNVs , 2008, Nature Genetics.
[16] Kenneth M. Weiss,et al. ForSim: a tool for exploring the genetic architecture of complex traits with controlled truth , 2008, Bioinform..
[17] A. Hattersley,et al. Clinical implications of a molecular genetic classification of monogenic β-cell diabetes , 2008, Nature Clinical Practice Endocrinology &Metabolism.
[18] Judy H. Cho,et al. Finding the missing heritability of complex diseases , 2009, Nature.
[19] K. Narayan,et al. Clinical risk factors, DNA variants, and the development of type 2 diabetes. , 2009, The New England journal of medicine.
[20] D. Reich,et al. Sensitive Detection of Chromosomal Segments of Distinct Ancestry in Admixed Populations , 2009, PLoS genetics.
[21] F. Collins,et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits , 2009, Proceedings of the National Academy of Sciences.
[22] Richard Durbin,et al. Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .
[23] Ayellet V. Segrè,et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis , 2010, Nature Genetics.
[24] M. DePristo,et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.
[25] M. King,et al. Genetic Heterogeneity in Human Disease , 2010, Cell.
[26] Manolis Kellis,et al. Discovery and characterization of chromatin states for systematic annotation of the human genome , 2010, Nature Biotechnology.
[27] H. Kang,et al. Variance component model to account for sample structure in genome-wide association studies , 2010, Nature Genetics.
[28] David B. Goldstein,et al. Rare Variants Create Synthetic Genome-Wide Associations , 2010, PLoS biology.
[29] Yun Li,et al. METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..
[30] Karen L. Mohlke,et al. A map of open chromatin in human pancreatic islets , 2010, Nature Genetics.
[31] P. Visscher,et al. Common SNPs explain a large proportion of heritability for human height , 2011 .
[32] Eric S. Lander,et al. Comparative Epigenomic Analysis of Murine and Human Adipogenesis , 2010, Cell.
[33] M. Boehnke,et al. Transferability of Type 2 Diabetes Implicated Loci in Multi-Ethnic Cohorts from Southeast Asia , 2011, PLoS genetics.
[34] M. DePristo,et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.
[35] Tien Yin Wong,et al. Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci , 2011, Nature Genetics.
[36] D. Altshuler,et al. Power in the phenotypic extremes: a simulation study of power in discovery and replication of rare variants , 2011, Genetic epidemiology.
[37] Naomi R. Wray,et al. Synthetic Associations Created by Rare Variants Do Not Explain Most GWAS Results , 2011, PLoS biology.
[38] David B. Goldstein,et al. The Importance of Synthetic Associations Will Only Be Resolved Empirically , 2011, PLoS biology.
[39] N Slimani,et al. Design and cohort description of the InterAct Project: an examination of the interaction of genetic and lifestyle factors on the incidence of type 2 diabetes in the EPIC Study , 2011, Diabetologia.
[40] Joshua M. Korn,et al. Discovery and genotyping of genome structural polymorphism by sequencing on a population scale , 2011, Nature Genetics.
[41] G. Abecasis,et al. Low-coverage sequencing: implications for design of complex trait association studies. , 2011, Genome research.
[42] P. Visscher,et al. GCTA: a tool for genome-wide complex trait analysis. , 2011, American journal of human genetics.
[43] E. Zeggini,et al. Synthetic Associations Are Unlikely to Account for Many Common Disease Genome-Wide Association Signals , 2011, PLoS biology.
[44] Wei Zheng,et al. dmGWAS: dense module searching for genome-wide association studies in protein-protein interaction networks , 2011, Bioinform..
[45] A. Price,et al. New approaches to disease mapping in admixed populations , 2011, Nature Reviews Genetics.
[46] A. Morris,et al. Transethnic Meta-Analysis of Genomewide Association Studies , 2011, Genetic epidemiology.
[47] P. Visscher,et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits , 2012, Nature Genetics.
[48] Haiyuan Yu,et al. Detecting overlapping protein complexes in protein-protein interaction networks , 2012, Nature Methods.
[49] Bronwen L. Aken,et al. GENCODE: The reference human genome annotation for The ENCODE Project , 2012, Genome research.
[50] Wei Lu,et al. Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians , 2011, Nature Genetics.
[51] Jake K. Byrnes,et al. Bayesian refinement of association signals for 14 loci in 3 common diseases , 2012, Nature Genetics.
[52] Data production leads,et al. An integrated encyclopedia of DNA elements in the human genome , 2012 .
[53] Shane J. Neph,et al. Systematic Localization of Common Disease-Associated Variation in Regulatory DNA , 2012, Science.
[54] Kenny Q. Ye,et al. An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.
[55] ENCODEConsortium,et al. An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.
[56] M. McCarthy,et al. Exome sequencing-driven discovery of coding polymorphisms associated with common metabolic phenotypes , 2012, Diabetologia.
[57] Inês Barroso,et al. Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes , 2012, Nature Genetics.
[58] Tanya M. Teslovich,et al. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes , 2012, Nature Genetics.
[59] G. Abecasis,et al. Detecting and estimating contamination of human DNA samples in sequencing and array-based genotype data. , 2012, American journal of human genetics.
[60] Xihong Lin,et al. Optimal tests for rare variant effects in sequencing association studies. , 2012, Biostatistics.
[61] H. Furuta,et al. Defective PAX4 R192H transcriptional repressor activities associated with maturity onset diabetes of the young and early onset-age of type 2 diabetes. , 2012, Journal of diabetes and its complications.
[62] Michael Boehnke,et al. Recommended Joint and Meta‐Analysis Strategies for Case‐Control Association Testing of Single Low‐Count Variants , 2013, Genetic epidemiology.
[63] Christian Fuchsberger,et al. Exome array analysis identifies new loci and low-frequency variants influencing insulin processing and secretion , 2012, Nature Genetics.
[64] K. Liestøl,et al. Production of phosphatidylinositol 5‐phosphate via PIKfyve and MTMR3 regulates cell migration , 2013, EMBO reports.
[65] Stephen C. J. Parker,et al. Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants , 2013, Proceedings of the National Academy of Sciences.
[66] Seunggeun Lee,et al. General framework for meta-analysis of rare variants in sequencing association studies. , 2013, American journal of human genetics.
[67] Y. J. Kim,et al. Genome-wide association study in a Chinese population identifies a susceptibility locus for type 2 diabetes at 7q32 near PAX4 , 2013, Diabetologia.
[68] Jason Flannick,et al. Evaluating empirical bounds on complex disease genetic architecture , 2013, Nature Genetics.
[69] Cedric Gondro,et al. Quality control for genome-wide association studies. , 2013, Methods in molecular biology.
[70] J. Marchini,et al. Multiway Admixture Deconvolution Using Phased or Unphased Ancestral Panels , 2013, Genetic epidemiology.
[71] Søren Brunak,et al. Whole-exome sequencing of 2,000 Danish individuals and the role of rare coding variants in type 2 diabetes. , 2013, American journal of human genetics.
[72] Amy L. Williams,et al. Association of a low-frequency variant in HNF1A with type 2 diabetes in a Latino population. , 2014, JAMA.
[73] Anne Tybjærg-Hansen,et al. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease , 2014, Nature Genetics.
[74] Kari Stefansson,et al. Identification of low-frequency and rare sequence variants associated with elevated or reduced risk of type 2 diabetes , 2014, Nature Genetics.
[75] Tanya M. Teslovich,et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility , 2014, Nature Genetics.
[76] J. Al-Aama,et al. A common Greenlandic TBC1D4 variant confers muscle insulin resistance and type 2 diabetes , 2014, Nature.
[77] Mark I. McCarthy,et al. Pancreatic islet enhancer clusters enriched in type 2 diabetes risk–associated variants , 2013, Nature Genetics.
[78] E. Lander,et al. Genetic Screens in Human Cells Using the CRISPR-Cas9 System , 2013, Science.
[79] Bernhard Horsthemke,et al. Leveraging Cross-Species Transcription Factor Binding Site Patterns: From Diabetes Risk Loci to Disease Mechanisms , 2014, Cell.
[80] Joseph K. Pickrell. Joint analysis of functional genomic data and genome-wide association studies of 18 human traits , 2013, bioRxiv.
[81] Thomas Meitinger,et al. Loss-of-function mutations in SLC30A8 protect against type 2 diabetes , 2014, Nature Genetics.
[82] Eric S. Lander,et al. A polygenic burden of rare disruptive mutations in schizophrenia , 2014, Nature.
[83] Pierre Fontanillas,et al. Rare variants in PPARG with decreased activity in adipocyte differentiation are associated with increased risk of type 2 diabetes , 2014, Proceedings of the National Academy of Sciences.
[84] Tanya M. Teslovich,et al. Sequence variants in SLC16A11 are a common risk factor for type 2 diabetes in Mexico , 2013, Nature.
[85] A. Hamsten,et al. TM6SF2 is a regulator of liver fat metabolism influencing triglyceride secretion and hepatic lipid droplet content , 2014, Proceedings of the National Academy of Sciences.
[86] T. Spector,et al. The Concordance and Heritability of Type 2 Diabetes in 34,166 Twin Pairs From International Twin Registers: The Discordant Twin (DISCOTWIN) Consortium , 2015, Twin Research and Human Genetics.
[87] Christian Gieger,et al. Genetic fine-mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci , 2016 .
[88] Gonçalo R. Abecasis,et al. Minimac2: Faster Genotype Imputation , 2015, Bioinform..