Cyperenoic acid suppresses osteoclast differentiation and delays bone loss in a senile osteoporosis mouse model by inhibiting non-canonical NF-κB pathway

[1]  Rohaya Megat Abdul Wahab,et al.  Determination of the differentiation capacities of murines' primary mononucleated cells and MC3T3-E1 cells , 2010, Cancer Cell International.

[2]  S. Ikehara,et al.  Prevention of senile osteoporosis in SAMP6 mice by intrabone marrow injection of allogeneic bone marrow cells. , 2004, Stem cells.

[3]  M. Ding,et al.  Pit- and trench-forming osteoclasts: a distinction that matters , 2015, Bone Research.

[4]  Huiying Li,et al.  Effect of berberine on bone mineral density in SAMP6 as a senile osteoporosis model. , 2003, Biological & pharmaceutical bulletin.

[5]  G. Mundy,et al.  Advances in osteoclast biology: old findings and new insights from mouse models , 2011, Nature Reviews Rheumatology.

[6]  J E Fonseca,et al.  Bone histomorphometry revisited. , 2012, Acta reumatologica portuguesa.

[7]  松下 睦 Age-related changes in bone mass in the senescence-accelerated mouse (SAM) : SAM-R/3 and SAM-P/6 as new murine models for senile osteoporosis , 1987 .

[8]  T. Palaga,et al.  Diarylheptanoid from Curcuma comosa Roxb. suppresses RANKL-induced osteoclast differentiation by decreasing NFATc1 and c-Fos expression via MAPK pathway. , 2016, European journal of pharmacology.

[9]  C. Kessenich The pathophysiology of osteoporotic vertebral fractures. , 1997, Rehabilitation nursing : the official journal of the Association of Rehabilitation Nurses.

[10]  C. Che,et al.  Constituents of Croton crassifolius roots. , 1988, Planta medica.

[11]  H. Yoshikawa,et al.  Bone Morphogenetic Proteins in Bone Stimulate Osteoclasts and Osteoblasts During Bone Development , 2006, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[12]  Vinay Tergaonkar,et al.  Noncanonical NF-κB Signaling in Health and Disease. , 2016, Trends in molecular medicine.

[13]  S. Ikehara,et al.  Treatment of Senile Osteoporosis in SAMP6 Mice by Intra–Bone Marrow Injection of Allogeneic Bone Marrow Cells , 2006, Stem cells.

[14]  Jiao-Jiao Xu,et al.  Clerodane diterpenoids from Croton crassifolius. , 2012, Journal of natural products.

[15]  Xiangrong Zhou,et al.  Site-specific bone loss in senescence-accelerated mouse (SAMP6): A murine model for senile osteoporosis , 2009, Experimental Gerontology.

[16]  Y. Toyama,et al.  Role of DC-STAMP in cellular fusion of osteoclasts and macrophage giant cells , 2006, Journal of Bone and Mineral Metabolism.

[17]  S. Ghosh,et al.  Shared Principles in NF-κB Signaling , 2008, Cell.

[18]  Ulrich Siebenlist,et al.  Requirement for NF-κB in osteoclast and B-cell development , 1997 .

[19]  Hiroshi Takayanagi,et al.  Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. , 2002, Developmental cell.

[20]  H. Chung,et al.  Potent anti-angiogenic component in Croton crassifolius and its mechanism of action. , 2015, Journal of ethnopharmacology.

[21]  M. Seibel,et al.  Clinical review 165: Markers of bone remodeling in metastatic bone disease. , 2003, The Journal of clinical endocrinology and metabolism.

[22]  T. Takeda Senescence-accelerated mouse (SAM): a biogerontological resource in aging research , 1999, Neurobiology of Aging.

[23]  T. Tsuboyama,et al.  Chromosome 13 Locus, Pbd2, Regulates Bone Density in Mice , 2001, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[24]  T. Arnett,et al.  Rodent osteoclast cultures. , 2012, Methods in molecular biology.

[25]  Jian-Dong Jiang,et al.  Substituted benzothiophene or benzofuran derivatives as a novel class of bone morphogenetic protein-2 up-regulators: synthesis, structure-activity relationships, and preventive bone loss efficacies in senescence accelerated mice (SAMP6) and ovariectomized rats. , 2010, Journal of medicinal chemistry.

[26]  A. Leonardi,et al.  Requirement for NF-kappaB in osteoclast and B-cell development. , 1997, Genes & development.

[27]  Ulrich Siebenlist,et al.  NF‐κB p50 and p52 Expression Is Not Required for RANK‐Expressing Osteoclast Progenitor Formation but Is Essential for RANK‐ and Cytokine‐Mediated Osteoclastogenesis , 2002, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[28]  J. Rossant,et al.  Bone sialoprotein plays a functional role in bone formation and osteoclastogenesis , 2008, The Journal of experimental medicine.

[29]  Hong-Hee Kim,et al.  Signal transduction by receptor activator of nuclear factor kappa B in osteoclasts. , 2003, Biochemical and biophysical research communications.

[30]  M. Almeida,et al.  FoxO proteins restrain osteoclastogenesis and bone resorption by attenuating H2O2 accumulation , 2014, Nature Communications.

[31]  Shaojiang Song,et al.  Biotransfomation of cyperenoic acid by Cunninghamella elegans AS 3.2028 and the potent anti-angiogenic activities of its metabolites. , 2017, Fitoterapia.

[32]  Michael C. Ostrowski,et al.  NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism. , 2008, The Journal of clinical investigation.

[33]  E. Bradley,et al.  Osteoclast culture and resorption assays. , 2008, Methods in molecular biology.

[34]  H. Takayanagi,et al.  Interferon regulatory factor-8 regulates bone metabolism by suppressing osteoclastogenesis , 2009, Nature Medicine.

[35]  S. Boonen,et al.  Age-related factors in the pathogenesis of senile (Type II) femoral neck fractures. , 1996, American journal of orthopedics.

[36]  Liling Yang,et al.  Anti-nociceptive and anti-inflammatory effects of Croton crassifolius ethanol extract. , 2012, Journal of ethnopharmacology.

[37]  J. Caamaño,et al.  Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. , 1997, Nature medicine.

[38]  E. Dejardin The alternative NF-kappaB pathway from biochemistry to biology: pitfalls and promises for future drug development. , 2006, Biochemical pharmacology.

[39]  M. Seibel,et al.  Markers of Bone Remodeling in Metastatic Bone Disease , 2003 .

[40]  Jung Ha Kim,et al.  Regulation of NFATc1 in Osteoclast Differentiation , 2014, Journal of bone metabolism.

[41]  J. Smolen,et al.  Inflammatory bone loss: pathogenesis and therapeutic intervention , 2012, Nature Reviews Drug Discovery.

[42]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[43]  Taro Kawai,et al.  Toll-Like Receptor Signaling Pathways , 2014, Front. Immunol..

[44]  E. Wagner,et al.  NF-κB p50 and p52 Regulate Receptor Activator of NF-κB Ligand (RANKL) and Tumor Necrosis Factor-induced Osteoclast Precursor Differentiation by Activating c-Fos and NFATc1* , 2007, Journal of Biological Chemistry.

[45]  Shao-Cong Sun,et al.  Non-canonical NF-κB signaling pathway , 2011, Cell Research.

[46]  H. Takayanagi Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems , 2007, Nature Reviews Immunology.

[47]  T. Mak,et al.  Activation of noncanonical NF-κB requires coordinated assembly of a regulatory complex of the adaptors cIAP1, cIAP2, TRAF2, TRAF3 and the kinase NIK , 2008, Nature Immunology.