Minimal Sets over Monotone Predicates in Boolean Formulae

The importance and impact of the Boolean satisfiability (SAT) problem in many practical settings is well-known. Besides SAT, a number of computational problems related with Boolean formulas find a wide range of practical applications. Concrete examples for CNF formulas include computing prime implicates (PIs), minimal models (MMs), minimal unsatisfiable subsets (MUSes), minimal equivalent subsets (MESes) and minimal correction subsets (MCSes), among several others. This paper builds on earlier work by Bradley and Manna and shows that all these computational problems can be viewed as computing a minimal set subject to a monotone predicate, i.e. the MSMP problem. Thus, if cast as instances of the MSMP problem, these computational problems can be solved with the same algorithms. More importantly, the insights provided by this result allow developing a new algorithm for the general MSMP problem, that is asymptotically optimal. Moreover, in contrast with other asymptotically optimal algorithms, the new algorithm performs competitively in practice. The paper carries out a comprehensive experimental evaluation of the new algorithm on the MUS problem, and demonstrates that it outperforms state of the art MUS extraction algorithms.

[1]  Armin Biere,et al.  Managing SAT inconsistencies with HUMUS , 2012, VaMoS '12.

[2]  Joao Marques-Silva,et al.  MUSer2: An Efficient MUS Extractor , 2012, J. Satisf. Boolean Model. Comput..

[3]  Bart Selman,et al.  Satisfiability Solvers , 2008, Handbook of Knowledge Representation.

[4]  Karem A. Sakallah,et al.  Algorithms for Computing Minimal Unsatisfiable Subsets of Constraints , 2007, Journal of Automated Reasoning.

[5]  Frank van Harmelen,et al.  Debugging Incoherent Terminologies , 2007, Journal of Automated Reasoning.

[6]  Pierre Marquis,et al.  Consequence Finding Algorithms , 2000 .

[7]  N. J.L.deSiqueira,et al.  Explanation-Based Generalisation of Failures , 1988, ECAI.

[8]  Alexander Nadel Boosting minimal unsatisfiable core extraction , 2010, Formal Methods in Computer Aided Design.

[9]  Inês Lynce,et al.  On Improving MUS Extraction Algorithms , 2011, SAT.

[10]  P. M. Wognum,et al.  Diagnosing and Solving Over-Determined Constraint Satisfaction Problems , 1993, IJCAI.

[11]  Toby Walsh,et al.  Handbook of satisfiability , 2009 .

[12]  Inês Lynce,et al.  Conflict-Driven Clause Learning SAT Solvers , 2009, Handbook of Satisfiability.

[13]  John McCarthy,et al.  Circumscription - A Form of Non-Monotonic Reasoning , 1980, Artif. Intell..

[14]  Pierre Marquis,et al.  A Knowledge Compilation Map , 2002, J. Artif. Intell. Res..

[15]  Marco Cadoli,et al.  A Survey on Knowledge Compilation , 1997, AI Commun..

[16]  Lakhdar Sais,et al.  Extracting MUCs from Constraint Networks , 2006, ECAI.

[17]  Mikolás Janota,et al.  On Computing Minimal Equivalent Subformulas , 2012, CP.

[18]  Ofer Strichman,et al.  Faster Extraction of High-Level Minimal Unsatisfiable Cores , 2011, SAT.

[19]  Hans Kleine Büning,et al.  Theory and Applications of Satisfiability Testing - SAT 2008, 11th International Conference, SAT 2008, Guangzhou, China, May 12-15, 2008. Proceedings , 2008, SAT.

[20]  Armin Biere,et al.  Theory and Applications of Satisfiability Testing - SAT 2006, 9th International Conference, Seattle, WA, USA, August 12-15, 2006, Proceedings , 2006, SAT.

[21]  John W. Chinneck,et al.  Locating Minimal Infeasible Constraint Sets in Linear Programs , 1991, INFORMS J. Comput..

[22]  Alexander Felfernig,et al.  An efficient diagnosis algorithm for inconsistent constraint sets , 2011, Artificial Intelligence for Engineering Design, Analysis and Manufacturing.

[23]  James Bailey,et al.  Discovery of Minimal Unsatisfiable Subsets of Constraints Using Hitting Set Dualization , 2005, PADL.

[24]  Inês Lynce,et al.  Towards efficient MUS extraction , 2012, AI Commun..

[25]  Katsumi Inoue,et al.  Identifying Necessary Reactions in Metabolic Pathways by Minimal Model Generation , 2010, ECAI.

[26]  Joao Marques-Silva,et al.  MUSer2: an efficient MUS extractor, system description , 2012 .

[27]  Siert Wieringa,et al.  Understanding, Improving and Parallelizing MUS Finding Using Model Rotation , 2012, CP.

[28]  Éric Grégoire,et al.  On Approaches to Explaining Infeasibility of Sets of Boolean Clauses , 2008, 2008 20th IEEE International Conference on Tools with Artificial Intelligence.

[29]  Zohar Manna,et al.  Checking Safety by Inductive Generalization of Counterexamples to Induction , 2007, Formal Methods in Computer Aided Design (FMCAD'07).

[30]  Frank Wolter,et al.  Monodic fragments of first-order temporal logics: 2000-2001 A.D , 2001, LPAR.

[31]  Hans van Maaren,et al.  Finding Guaranteed MUSes Fast , 2008, SAT.

[32]  Raymond Reiter,et al.  A Theory of Diagnosis from First Principles , 1986, Artif. Intell..

[33]  Karem A. Sakallah,et al.  Reveal: A Formal Verification Tool for Verilog Designs , 2008, LPAR.

[34]  Karem A. Sakallah,et al.  Theory and Applications of Satisfiability Testing - SAT 2011 - 14th International Conference, SAT 2011, Ann Arbor, MI, USA, June 19-22, 2011. Proceedings , 2011, SAT.

[35]  Frank van Harmelen,et al.  Handbook of Knowledge Representation , 2008, Handbook of Knowledge Representation.

[36]  Ulrich Junker,et al.  QUICKXPLAIN: Preferred Explanations and Relaxations for Over-Constrained Problems , 2004, AAAI.

[37]  Nachum Dershowitz,et al.  A Scalable Algorithm for Minimal Unsatisfiable Core Extraction , 2006, SAT.

[38]  Zohar Manna,et al.  Property-directed incremental invariant generation , 2008, Formal Aspects of Computing.