On the Liu estimation of Bell regression model in the presence of multicollinearity

Recently, the Bell regression model (BRM) is proposed to model a count variable. The BRM is generally preferred over the Poisson regression model to overcome the restriction that the mean is equal to the variance. The BRM is usually estimated using the maximum likelihood estimator (MLE). It is a well-known phenomenon that the MLE is very sensitive to multicollinearity. We propose a Bell Liu regression (BLR) estimator to circumvent the problem of multicollinearity associated with the BRM. Moreover, some new Liu parameters are proposed for the BLR estimator. To evaluate the performance of the proposed estimators, we conduct a Monte Carlo simulation study where the mean squared error is considered as an evaluation criterion. In addition, a real application is also included to show the superiority of the proposed method.

[1]  S. M. Sapuan,et al.  Shrinkages and warpage in the processability of wood-filled polypropylene composite thin-walled parts formed by injection molding , 2013 .

[2]  Lawrence S. Mayer,et al.  On Biased Estimation in Linear Models , 1973 .

[3]  K. Månsson Developing a Liu estimator for the negative binomial regression model: method and application , 2013 .

[4]  Muhammad Amin,et al.  On the estimation of Bell regression model using ridge estimator , 2021, Commun. Stat. Simul. Comput..

[5]  W. Massy Principal Components Regression in Exploratory Statistical Research , 1965 .

[6]  J. Neyman,et al.  INADMISSIBILITY OF THE USUAL ESTIMATOR FOR THE MEAN OF A MULTIVARIATE NORMAL DISTRIBUTION , 2005 .

[7]  B. M. Kibria,et al.  A new Poisson Liu Regression Estimator: method and application , 2019, Journal of applied statistics.

[8]  M. I. Alheety,et al.  ON THE LIU AND ALMOST UNBIASED LIU ESTIMATORS IN THE PRESENCE OF MULTICOLLINEARITY WITH HETEROSCEDASTIC OR CORRELATED ERRORS , 2009 .

[9]  Developing Interaction Shrinkage Parameters for the Liu Estimator — with an Application to the Electricity Retail Market , 2015 .

[10]  B. Segerstedt On ordinary ridge regression in generalized linear models , 1992 .

[11]  G. Shukur,et al.  On Liu Estimators for the Logit Regression Model , 2012 .

[12]  B. M. Golam Kibria,et al.  A Simulation Study of Some Ridge Regression Estimators under Different Distributional Assumptions , 2010, Commun. Stat. Simul. Comput..

[13]  B. M. Kibria,et al.  Performance of Some New Ridge Regression Estimators , 2003 .

[14]  Artur J. Lemonte,et al.  On the Bell distribution and its associated regression model for count data , 2018 .

[15]  D. Marcondes Filho,et al.  Principal component regression-based control charts for monitoring count data , 2015, The International Journal of Advanced Manufacturing Technology.

[16]  Muhammad Amin,et al.  A new Liu-type estimator for the Inverse Gaussian Regression Model , 2020 .

[17]  M. Amin,et al.  On the performance of some new Liu parameters for the gamma regression model , 2018, Journal of Statistical Computation and Simulation.

[18]  M. Özkale,et al.  Profile monitoring for count data using Poisson and Conway-Maxwell-Poisson​ regression-based control charts under multicollinearity problem , 2021, J. Comput. Appl. Math..

[19]  Muhammad Nauman Akram,et al.  James Stein Estimator for the Inverse Gaussian Regression Model , 2021, Iranian Journal of Science and Technology, Transactions A: Science.

[20]  B. F. Swindel Good ridge estimators based on prior information , 1976 .

[21]  Muhammad Amin,et al.  Bayesian estimation of ridge parameter under different loss functions , 2020, Communications in Statistics - Theory and Methods.

[22]  Jibo Wu,et al.  More on the restricted Liu estimator in the logistic regression model , 2015, Commun. Stat. Simul. Comput..

[23]  Arthur E. Hoerl,et al.  Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.

[24]  M. Amin,et al.  On the James-Stein estimator for the poisson regression model , 2020, Commun. Stat. Simul. Comput..

[25]  Zhi-Fu Wang,et al.  On Biased Estimation in Linear Models , 2006, 2006 International Conference on Machine Learning and Cybernetics.

[26]  Fikri Akdeniz,et al.  On the almost unbiased generalized liu estimator and unbiased estimation of the bias and mse , 1995 .

[27]  R. W. Farebrother,et al.  Further Results on the Mean Square Error of Ridge Regression , 1976 .

[28]  Zheng Wang,et al.  Influence of silane surface modification of veneer on interfacial adhesion of wood–plastic plywood , 2014 .

[29]  Kristofer Månsson,et al.  On some beta ridge regression estimators: method, simulation and application , 2021 .

[30]  Muhammad Amin,et al.  A new adjusted Liu estimator for the Poisson regression model , 2021, Concurr. Comput. Pract. Exp..

[31]  Kristofer Månsson,et al.  A Poisson ridge regression estimator , 2011 .

[32]  Şükrü Özşahin,et al.  Optimization of some panel manufacturing parameters for the best bonding strength of plywood , 2013 .

[33]  Liu Kejian,et al.  A new class of blased estimate in linear regression , 1993 .