On the Liu estimation of Bell regression model in the presence of multicollinearity
暂无分享,去创建一个
[1] S. M. Sapuan,et al. Shrinkages and warpage in the processability of wood-filled polypropylene composite thin-walled parts formed by injection molding , 2013 .
[2] Lawrence S. Mayer,et al. On Biased Estimation in Linear Models , 1973 .
[3] K. Månsson. Developing a Liu estimator for the negative binomial regression model: method and application , 2013 .
[4] Muhammad Amin,et al. On the estimation of Bell regression model using ridge estimator , 2021, Commun. Stat. Simul. Comput..
[5] W. Massy. Principal Components Regression in Exploratory Statistical Research , 1965 .
[6] J. Neyman,et al. INADMISSIBILITY OF THE USUAL ESTIMATOR FOR THE MEAN OF A MULTIVARIATE NORMAL DISTRIBUTION , 2005 .
[7] B. M. Kibria,et al. A new Poisson Liu Regression Estimator: method and application , 2019, Journal of applied statistics.
[8] M. I. Alheety,et al. ON THE LIU AND ALMOST UNBIASED LIU ESTIMATORS IN THE PRESENCE OF MULTICOLLINEARITY WITH HETEROSCEDASTIC OR CORRELATED ERRORS , 2009 .
[10] B. Segerstedt. On ordinary ridge regression in generalized linear models , 1992 .
[11] G. Shukur,et al. On Liu Estimators for the Logit Regression Model , 2012 .
[12] B. M. Golam Kibria,et al. A Simulation Study of Some Ridge Regression Estimators under Different Distributional Assumptions , 2010, Commun. Stat. Simul. Comput..
[13] B. M. Kibria,et al. Performance of Some New Ridge Regression Estimators , 2003 .
[14] Artur J. Lemonte,et al. On the Bell distribution and its associated regression model for count data , 2018 .
[15] D. Marcondes Filho,et al. Principal component regression-based control charts for monitoring count data , 2015, The International Journal of Advanced Manufacturing Technology.
[16] Muhammad Amin,et al. A new Liu-type estimator for the Inverse Gaussian Regression Model , 2020 .
[17] M. Amin,et al. On the performance of some new Liu parameters for the gamma regression model , 2018, Journal of Statistical Computation and Simulation.
[18] M. Özkale,et al. Profile monitoring for count data using Poisson and Conway-Maxwell-Poisson regression-based control charts under multicollinearity problem , 2021, J. Comput. Appl. Math..
[19] Muhammad Nauman Akram,et al. James Stein Estimator for the Inverse Gaussian Regression Model , 2021, Iranian Journal of Science and Technology, Transactions A: Science.
[20] B. F. Swindel. Good ridge estimators based on prior information , 1976 .
[21] Muhammad Amin,et al. Bayesian estimation of ridge parameter under different loss functions , 2020, Communications in Statistics - Theory and Methods.
[22] Jibo Wu,et al. More on the restricted Liu estimator in the logistic regression model , 2015, Commun. Stat. Simul. Comput..
[23] Arthur E. Hoerl,et al. Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.
[24] M. Amin,et al. On the James-Stein estimator for the poisson regression model , 2020, Commun. Stat. Simul. Comput..
[25] Zhi-Fu Wang,et al. On Biased Estimation in Linear Models , 2006, 2006 International Conference on Machine Learning and Cybernetics.
[26] Fikri Akdeniz,et al. On the almost unbiased generalized liu estimator and unbiased estimation of the bias and mse , 1995 .
[27] R. W. Farebrother,et al. Further Results on the Mean Square Error of Ridge Regression , 1976 .
[28] Zheng Wang,et al. Influence of silane surface modification of veneer on interfacial adhesion of wood–plastic plywood , 2014 .
[29] Kristofer Månsson,et al. On some beta ridge regression estimators: method, simulation and application , 2021 .
[30] Muhammad Amin,et al. A new adjusted Liu estimator for the Poisson regression model , 2021, Concurr. Comput. Pract. Exp..
[31] Kristofer Månsson,et al. A Poisson ridge regression estimator , 2011 .
[32] Şükrü Özşahin,et al. Optimization of some panel manufacturing parameters for the best bonding strength of plywood , 2013 .
[33] Liu Kejian,et al. A new class of blased estimate in linear regression , 1993 .