Transparent highly oriented 3C-SiC bulks by halide laser CVD

Abstract Transparent and highly oriented 3C-SiC bulks were speedily fabricated at deposition temperature (Tdep) of 1623 K by halide laser chemical vapor deposition (HLCVD). The effect of total pressure (Ptot) on the optical transmittance, preferred orientation, microstructure, deposition rate (Rdep) and micro-hardness were investigated. The maximum Rdep of the transparent 3C-SiC reached 2450 μm/h at Ptot = 10 kPa. With an increase in Ptot, the transmittance of 3C-SiC bulks increased firstly, and then decreased. At Ptot = 10 kPa, 3C-SiC bulk, a highly -oriented and low density of defects, showed the highest transmittance, greater than 55% in the wavelength range of 800–1100 nm. At Ptot = 4 kPa and 20 kPa, 3C-SiC bulks showed much lower transmittance, in which contained poorly oriented grains and numerous defects. The Vickers micro-hardness of 3C-SiC bulks increased with increasing Ptot and showed the highest value of 34.8 GPa at Ptot = 40 kPa.

[1]  A. L. Ortiz,et al.  Liquid-phase assisted flash sintering of SiC from powder mixtures prepared by aqueous colloidal processing , 2017 .

[2]  M. Skowronski,et al.  Halide-CVD Growth of Bulk SiC Crystals , 2006 .

[3]  D. Choi,et al.  Effect of Diluent Gases on Growth Behavior and Characteristics of Chemically Vapor Deposited Silicon Carbide Films , 2004 .

[4]  K. Endo,et al.  Raman scattering of SiC: Application to the identification of heteroepitaxy of SiC polytypes , 1987 .

[5]  B W Murray,et al.  Properties of chemical-vapor-deposited silicon carbide for optics applications in severe environments. , 1991, Applied optics.

[6]  Feng Liao,et al.  Superhard nanocrystalline silicon carbide films , 2005 .

[7]  J. R. Potopowicz,et al.  Nonlinear Optical Properties of Hexagonal Silicon Carbide , 1971 .

[8]  Raymond L. Taylor,et al.  Transparent SiC for mid-IR windows and domes , 1994, Optics & Photonics.

[9]  Lianmeng Zhang,et al.  Effect of CH4/SiCl4 ratio on the composition and microstructure of 〈110〉-oriented β-SiC bulks by halide CVD , 2017 .

[10]  F. Langlais,et al.  Experimental kinetic study of the chemical vapour deposition of SiC-based ceramics from CH3SiCl3H2 gas precursor , 1995 .

[11]  L. Balogh,et al.  Influence of sintering temperature and pressure on crystallite size and lattice defect structure in nanocrystalline SiC , 2007 .

[12]  Yuping Zeng,et al.  Porous SiC ceramics fabricated by quick freeze casting and solid state sintering , 2017 .

[13]  Weiwei Li,et al.  Fabrication and optical characterizations of Yb, Er codoped CaF2 transparent ceramic , 2014 .

[14]  P. Shaffer Refractive index, dispersion, and birefringence of silicon carbide polytypes. , 1971, Applied optics.

[15]  T. Goto,et al.  Laser chemical vapor deposition of SiC films with CO2 laser , 2010 .

[16]  Jasbinder S. Sanghera,et al.  Development of transparent polycrystalline beta-silicon carbide , 2013, Optics & Photonics - Optical Engineering + Applications.

[17]  A. Krell,et al.  Transmission physics and consequences for materials selection, manufacturing, and applications , 2009 .

[18]  J. Chai,et al.  Influence of hydrogen dilution on the growth of nanocrystalline silicon carbide films by low-frequency inductively coupled plasma chemical vapor deposition , 2008 .

[19]  Xiaodong He,et al.  Superhard and tougher SiC/diamond-like-carbon composite films produced by electron beam physical vapour deposition , 2009 .

[20]  F. Lotgering,et al.  Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures—I , 1959 .

[21]  C. Tin,et al.  Raman and Rutherford backscattering analyses of cubic SiC thin films grown on Si by vertical chemical vapor deposition , 1995 .

[22]  Lianmeng Zhang,et al.  High‐Speed Preparation of ‐ and ‐Oriented β‐SiC Films by Laser Chemical Vapor Deposition , 2014 .

[23]  M. Syväjärvi,et al.  Microstructural characterization of very thick freestanding 3C-SiC wafers , 2004 .

[24]  J. Butler,et al.  Morphology of Optically Transparent Cubic Silicon Carbide Prepared by Chemical Vapor Deposition , 1996 .

[25]  Magnus Willander,et al.  Silicon carbide and diamond for high temperature device applications , 2006 .

[26]  H. S. Jha,et al.  Highly crystalline silicon carbide thin films grown at low substrate temperature by HWCVD technique , 2015, Journal of Materials Science: Materials in Electronics.

[27]  Dong-Joo Kim,et al.  Microhardness and surface roughness of silicon carbide by chemical vapour deposition , 1997 .

[28]  H. S. Jha,et al.  Effects of substrate temperature on structural and electrical properties of cubic silicon carbide films deposited by hot wire chemical vapor deposition technique , 2015, Journal of Materials Science: Materials in Electronics.

[29]  Takashi Goto,et al.  High‐Temperature Oxidation of Chemically Vapor‐Deposited Silicon Carbide in Wet Oxygen at 1823 to 1923 K , 1990 .

[30]  F. Finger,et al.  Effect of filament and substrate temperatures on the structural and electrical properties of SiC thin films grown by the HWCVD technique , 2008 .

[31]  Lianmeng Zhang,et al.  Preparation of highly oriented β-SiC bulks by halide laser chemical vapor deposition , 2017 .

[32]  Yongil Kim,et al.  Microstructure Comparison of Transparent and Opaque CVD SiC , 1995 .

[33]  Lianmeng Zhang,et al.  Ultra‐Fast Fabrication of ‐Oriented β‐SiC Wafers by Halide CVD , 2016 .

[34]  F. Finger,et al.  Microstructure of highly crystalline silicon carbide thin films grown by HWCVD technique , 2008 .

[35]  P. Gantzel,et al.  The structure of chemical vapor deposited silicon carbide , 1977 .

[36]  S. Motojima,et al.  Deposition and microhardness of SiC from the Si2Cl6-C3H8-H2-Ar system , 1986 .

[37]  R. Young,et al.  A microstructural study of silicon carbide fibres through the use of Raman microscopy , 2001 .

[38]  Raymond L. Taylor,et al.  Transparent chemical vapor deposited β‐SiC , 1994 .