Quantum squeezed light in gravitational-wave detectors

The field of squeezed states for gravitational-wave (GW) detector enhancement is rapidly maturing. In this review paper, we provide an analysis of the field circa 2013. We begin by outlining the concept and description of quantum squeezed states. This is followed by an overview of how quantum squeezed states can improve GW detection, and the requirements on squeezed states to achieve such enhancement. Next, an overview of current technology for producing squeezed states, using atoms, optomechanical methods and nonlinear crystals, is provided. We finally highlight the milestone squeezing implementation experiments at the GEO600 and LIGO GW detectors.

[1]  Chunnong Zhao,et al.  Narrowing the filter-cavity bandwidth in gravitational-wave detectors via optomechanical interaction. , 2014, Physical review letters.

[2]  S. Cecotti,et al.  Y-systems, Q-systems, and 4D N=2?> supersymmetric QFT , 2014, 1403.7613.

[3]  M. Evans,et al.  Balanced homodyne readout for quantum limited gravitational wave detectors. , 2014, Optics express.

[4]  Vitus Händchen,et al.  Quantum up-conversion of squeezed vacuum states from 1550 to 532 nm. , 2014, Physical review letters.

[5]  R. Adhikari,et al.  Gravitational Radiation Detection with Laser Interferometry , 2013, 1305.5188.

[6]  J. Miller,et al.  Loss in long-storage-time optical cavities. , 2013, Optics express.

[7]  P K Lam,et al.  Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light. , 2013, Optics express.

[8]  M. Aspelmeyer,et al.  Squeezed light from a silicon micromechanical resonator , 2013, Nature.

[9]  A. Khalaidovski,et al.  Impact of backscattered light in a squeezing-enhanced interferometric gravitational-wave detector , 2013, 1307.8176.

[10]  B C Buchler,et al.  Scattering-free optical levitation of a cavity mirror. , 2013, Physical review letters.

[11]  Derek K. Jones,et al.  Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light , 2013, Nature Photonics.

[12]  A. Wade,et al.  Path length modulation technique for scatter noise immunity in squeezing measurements. , 2013, Optics letters.

[13]  C. Regal,et al.  Strong Optomechanical Squeezing of Light , 2013, 1306.1268.

[14]  Konrad Banaszek,et al.  Fundamental quantum interferometry bound for the squeezed-light-enhanced gravitational wave detector GEO 600 , 2013, 1305.7268.

[15]  Alberto M. Marino,et al.  Rotation of the noise ellipse for squeezed vacuum light generated via four-wave-mixing , 2013, 1305.4353.

[16]  L. Barsotti,et al.  Realistic filter cavities for advanced gravitational wave detectors , 2013, 1305.1599.

[17]  R. Schnabel,et al.  First long-term application of squeezed states of light in a gravitational-wave observatory. , 2013, Physical review letters.

[18]  Yanbei Chen,et al.  Macroscopic quantum mechanics: theory and experimental concepts of optomechanics , 2013, 1302.1924.

[19]  Irina Novikova,et al.  All-atomic generation and noise-quadrature filtering of squeezed vacuum in hot Rb vapor , 2012, 1204.3967.

[20]  P. Lett,et al.  Generation of pulsed bipartite entanglement using four-wave mixing , 2012, 1211.7127.

[21]  Karsten Danzmann,et al.  Quantum-dense metrology , 2012, Nature Photonics.

[22]  Thierry Botter,et al.  Non-classical light generated by quantum-noise-driven cavity optomechanics , 2012, Nature.

[23]  C. M. Mow-Lowry,et al.  Balanced homodyne detection of optical quantum states at audio-band frequencies and below , 2012, 1205.3229.

[24]  Large-angle scattered light measurements for quantum-noise filter cavity design studies. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[25]  K. S. Thorne,et al.  The characterization of Virgo data and its impact on gravitational-wave searches , 2012, 1203.5613.

[26]  Robert W. Taylor,et al.  Sensitivity Achieved by the LIGO and Virgo Gravitational Wave Detectors during LIGO's Sixth and Virgo's Second and Third Science Runs , 2012 .

[27]  Bernard F. Schutz,et al.  Doing Science with eLISA: Astrophysics and Cosmology in the Millihertz Regime , 2012, 1201.3621.

[28]  Peter Fritschel,et al.  DC readout experiment in Enhanced LIGO , 2011, 1110.2815.

[29]  Karsten Danzmann,et al.  Long-term stable squeezed vacuum state of light for gravitational wave detectors , 2012 .

[30]  Maira Amezcua,et al.  Quantum Optics , 2012 .

[31]  D. McClelland,et al.  Backscatter tolerant squeezed light source for advanced gravitational-wave detectors. , 2011, Optics letters.

[32]  Moritz Mehmet,et al.  Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB. , 2011, Optics express.

[33]  David Blair,et al.  A gravitational wave observatory operating beyond the quantum shot-noise limit: Squeezed light in application , 2011, 1109.2295.

[34]  N. Mavalvala,et al.  Advanced interferometry, quantum optics and optomechanics in gravitational wave detectors , 2011 .

[35]  Weiping Zhang,et al.  Realization of low frequency and controllable bandwidth squeezing based on a four-wave-mixing amplifier in rubidium vapor. , 2011, Optics letters.

[36]  Vincent Loriette,et al.  Status of the Virgo project , 2011 .

[37]  Shuntaro Takeda,et al.  Teleportation of Nonclassical Wave Packets of Light , 2011, Science.

[38]  Reinhard F. Werner,et al.  Strong Einstein-Podolsky-Rosen entanglement from a single squeezed light source , 2011, 1103.1817.

[39]  D. McClelland,et al.  An investigation of doubly-resonant optical parametric oscillators and nonlinear crystals for squeezing , 2011 .

[40]  S. Bose,et al.  Sensitivity studies for third-generation gravitational wave observatories , 2010, 1012.0908.

[41]  N. Mavalvala,et al.  Quantum metrology for gravitational wave astronomy. , 2010, Nature communications.

[42]  V. Moscatelli,et al.  Calibration and sensitivity of the Virgo detector during its second science run , 2010, 1009.5190.

[43]  Vitus Händchen,et al.  Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection. , 2010, Physical review letters.

[44]  G. M. Harry,et al.  Advanced LIGO: the next generation of gravitational wave detectors , 2010 .

[45]  F. Khalili,et al.  Optimal configurations of filter cavity in future gravitational-wave detectors , 2010, 1003.2859.

[46]  Hartmut Grote,et al.  The GEO 600 status , 2010 .

[47]  D. Stinebring,et al.  The International Pulsar Timing Array project: using pulsars as a gravitational wave detector , 2009, 0911.5206.

[48]  R. DeSalvo,et al.  A xylophone configuration for a third-generation gravitational wave detector , 2009, 0906.2655.

[49]  F. Khalili,et al.  Increasing the sensitivity of future gravitational-wave detectors with double squeezed-input , 2009, 0905.1291.

[50]  R. Schnabel,et al.  Broadband squeezing of quantum noise in a Michelson interferometer with Twin-Signal-Recycling. , 2009, Optics letters.

[51]  D. McClelland,et al.  Impact of non-stationary events on low frequency homodyne detection , 2008 .

[52]  R. Taylor,et al.  dc readout experiment at the Caltech 40m prototype interferometer , 2008 .

[53]  G. F. Marranghello,et al.  The Schenberg spherical gravitational wave detector: the first commissioning runs , 2008 .

[54]  Keisuke Goda,et al.  A quantum-enhanced prototype gravitational-wave detector , 2008, 0802.4118.

[55]  R. Schnabel,et al.  Quantum engineering of squeezed states for quantum communication and metrology , 2007, 0707.2845.

[56]  Karsten Danzmann,et al.  Coherent control of broadband vacuum squeezing , 2007, 0704.3796.

[57]  A. Furusawa,et al.  Observation of -9 dB quadrature squeezing with improvement of phase stability in homodyne measurement. , 2007, Optics express.

[58]  Jaromír Fiurásek,et al.  Experimental demonstration of continuous variable purification of squeezed States. , 2006, Physical review letters.

[59]  Karsten Danzmann,et al.  Coherent control of vacuum squeezing in the gravitational-wave detection band. , 2006, Physical review letters.

[60]  A. Furusawa,et al.  Squeezing at 946nm with periodically poled KTiOPO(4). , 2005, Optics express.

[61]  F. Khalili,et al.  Squeezed-state source using radiation-pressure-induced rigidity (14 pages) , 2005, gr-qc/0511001.

[62]  Karsten Danzmann,et al.  Demonstration of a squeezed-light-enhanced power- and signal-recycled Michelson interferometer. , 2005, Physical review letters.

[63]  A. Bandrauk,et al.  Asymmetries in strong-field photoionization by few-cycle laser pulses: Kinetic-energy spectra and semiclassical explanation of the asymmetries of fast and slow electrons , 2005 .

[64]  N. Mavalvala,et al.  Quantum noise locking , 2005, quant-ph/0505164.

[65]  N. Mavalvala,et al.  Photothermal fluctuations as a fundamental limit to low-frequency squeezing in a degenerate optical parametric oscillator , 2005, quant-ph/0505154.

[66]  Karsten Danzmann,et al.  Experimental characterization of frequency-dependent squeezed light , 2005, 0706.4479.

[67]  Review: Quantum noise in gravitational-wave interferometers , 2004 .

[68]  Kirk McKenzie,et al.  Squeezing in the audio gravitational-wave detection band. , 2004, Physical review letters.

[69]  R. Schnabel,et al.  Squeezed-input, optical-spring, signal-recycled gravitational-wave detectors , 2003, gr-qc/0303066.

[70]  A. Matsko,et al.  Noise in gravitational-wave detectors and other classical-force measurements is not influenced by test-mass quantization , 2001, gr-qc/0109003.

[71]  D. McClelland,et al.  Experimental demonstration of a squeezing-enhanced power-recycled michelson interferometer for gravitational wave detection. , 2002, Physical review letters.

[72]  Jonathan P. Dowling,et al.  A quantum Rosetta stone for interferometry , 2002, quant-ph/0202133.

[73]  A. Buonanno,et al.  Quantum noise in second generation, signal recycled laser interferometric gravitational wave detectors , 2001, gr-qc/0102012.

[74]  Berkeley,et al.  Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics , 2000, gr-qc/0008026.

[75]  S. Rowan,et al.  Gravitational Wave Detection by Interferometry (Ground and Space) , 2000, Living reviews in relativity.

[76]  Colin P. Williams,et al.  Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit , 1999, Physical review letters.

[77]  David E. McClelland,et al.  Optimization and transfer of vacuum squeezing from an optical parametric oscillator , 1999 .

[78]  P. Saulson Fundamentals of Interferometric Gravitational Wave Detectors , 1994 .

[79]  Joshua R. Smith,et al.  LIGO: the Laser Interferometer Gravitational-Wave Observatory , 1992, Science.

[80]  S. Reynaud,et al.  Quantum Limits in Interferometric Measurements , 1990, quant-ph/0101104.

[81]  Sanders,et al.  Quantum dynamics of the nonlinear rotator and the effects of continual spin measurement. , 1989, Physical review. A, General physics.

[82]  Hall,et al.  Generation of squeezed states by parametric down conversion. , 1986, Physical review letters.

[83]  Mertz,et al.  Observation of squeezed states generated by four-wave mixing in an optical cavity. , 1985, Physical review letters.

[84]  W. Unruh Quantum Noise in the Interferometer Detector , 1983 .

[85]  R. Krotkov,et al.  Quantum Optics, Experimental Gravitation, and Measurement Theory , 1983 .

[86]  C. Caves Quantum Mechanical Noise in an Interferometer , 1981 .

[87]  Carlton M. Caves,et al.  Quantum-Mechanical Radiation-Pressure Fluctuations in an Interferometer , 1980 .

[88]  W. Press,et al.  Gravitational waves. , 1980, Science.

[89]  R. C. Miller,et al.  Tunable Coherent Parametric Oscillation in LiNb O 3 at Optical Frequencies , 1965 .

[90]  R. Glauber Coherent and incoherent states of the radiation field , 1963 .