A molecular design approach towards elastic and multifunctional polymer electronics

[1]  Sihong Wang,et al.  Stretchable transistors and functional circuits for human-integrated electronics , 2021, Nature Electronics.

[2]  Jianliang Xiao,et al.  Air/water interfacial assembled rubbery semiconducting nanofilm for fully rubbery integrated electronics , 2020, Science Advances.

[3]  D. Rogers,et al.  Force Fields for Macromolecular Assemblies Containing Diketopyrrolopyrrole and Thiophene. , 2020, Journal of chemical theory and computation.

[4]  Jong Won Chung,et al.  Fully stretchable active-matrix organic light-emitting electrochemical cell array , 2020, Nature Communications.

[5]  Se Hyun Kim,et al.  Facile Photo-crosslinking System for Polymeric Gate Dielectric Materials toward Solution-processed Organic Field-effect Transistors: Role of Crosslinker in Various Polymer Types. , 2020, ACS applied materials & interfaces.

[6]  J. B. Tok,et al.  Tuning the Mechanical Properties of a Polymer Semiconductor by Modulating Hydrogen Bonding Interactions , 2020 .

[7]  X. Gu,et al.  Tacky Elastomers to Enable Tear‐Resistant and Autonomous Self‐Healing Semiconductor Composites , 2020, Advanced Functional Materials.

[8]  Do Hwan Kim,et al.  Universal three-dimensional crosslinker for all-photopatterned electronics , 2020, Nature Communications.

[9]  Do Hwan Kim,et al.  Universal three-dimensional crosslinker for all-photopatterned electronics , 2020, Nature Communications.

[10]  B. O’Connor,et al.  Unveiling the Stress–Strain Behavior of Conjugated Polymer Thin Films for Stretchable Device Applications , 2020, Macromolecules.

[11]  Theodore A. Cohen,et al.  Enhanced miscibility and strain resistance of blended elastomer/π‐conjugated polymer composites through side chain functionalization towards stretchable electronics , 2020 .

[12]  X. Gu,et al.  Branched Polyethylene as a Plasticizing Additive to Modulate the Mechanical Properties of π-Conjugated Polymers , 2019, Macromolecules.

[13]  A. Dobrynin,et al.  Architectural Code for Rubber Elasticity: From Supersoft to Superfirm Materials , 2019, Macromolecules.

[14]  Zhenan Bao,et al.  Electronic Skin: Recent Progress and Future Prospects for Skin‐Attachable Devices for Health Monitoring, Robotics, and Prosthetics , 2019, Advanced materials.

[15]  R. Dauskardt,et al.  An Intrinsically Stretchable High‐Performance Polymer Semiconductor with Low Crystallinity , 2019, Advanced Functional Materials.

[16]  J. B. Tok,et al.  Conjugated Carbon Cyclic Nanorings as Additives for Intrinsically Stretchable Semiconducting Polymers , 2019, Advanced materials.

[17]  Xingyi Huang,et al.  Polymer-Based Gate Dielectrics for Organic Field-Effect Transistors , 2019, Chemistry of Materials.

[18]  Zhenan Bao,et al.  Tuning the Cross-Linker Crystallinity of a Stretchable Polymer Semiconductor , 2018, Chemistry of Materials.

[19]  R. Colby,et al.  Connecting the Mechanical and Conductive Properties of Conjugated Polymers , 2018 .

[20]  Franklin L. Lee,et al.  Effect of Nonconjugated Spacers on Mechanical Properties of Semiconducting Polymers for Stretchable Transistors , 2018, Advanced Functional Materials.

[21]  Michael U. Ocheje,et al.  Probing the Viscoelastic Property of Pseudo Free-Standing Conjugated Polymeric Thin Films. , 2018, Macromolecular rapid communications.

[22]  Sihong Wang,et al.  Nonhalogenated Solvent Processable and Printable High-Performance Polymer Semiconductor Enabled by Isomeric Nonconjugated Flexible Linkers , 2018, Macromolecules.

[23]  U. Bunz,et al.  Immobilization Strategies for Organic Semiconducting Conjugated Polymers. , 2018, Chemical reviews.

[24]  Lifeng Chi,et al.  High- k Gate Dielectrics for Emerging Flexible and Stretchable Electronics. , 2018, Chemical reviews.

[25]  Zhenan Bao,et al.  Skin-Inspired Electronics: An Emerging Paradigm. , 2018, Accounts of chemical research.

[26]  Zhenan Bao,et al.  Tough and Water‐Insensitive Self‐Healing Elastomer for Robust Electronic Skin , 2018, Advanced materials.

[27]  Boris Murmann,et al.  Skin electronics from scalable fabrication of an intrinsically stretchable transistor array , 2018, Nature.

[28]  Elsa Reichmanis,et al.  Versatile Interpenetrating Polymer Network Approach to Robust Stretchable Electronic Devices , 2017 .

[29]  Suchol Savagatrup,et al.  Mechanical Properties of Organic Semiconductors for Stretchable, Highly Flexible, and Mechanically Robust Electronics. , 2017, Chemical reviews.

[30]  Zhenan Bao,et al.  Stretchable and ultraflexible organic electronics , 2017 .

[31]  Taek-Soo Kim,et al.  Understanding mechanical behavior and reliability of organic electronic materials , 2017 .

[32]  Alexander L. Ayzner,et al.  Melt‐Processing of Complementary Semiconducting Polymer Blends for High Performance Organic Transistors , 2017, Advanced materials.

[33]  Boris Murmann,et al.  Highly stretchable polymer semiconductor films through the nanoconfinement effect , 2017, Science.

[34]  Xiaodan Gu,et al.  Intrinsically stretchable and healable semiconducting polymer for organic transistors , 2016, Nature.

[35]  Zhenan Bao Skin-inspired organic electronic materials and devices , 2016 .

[36]  Zhenan Bao,et al.  Inducing Elasticity through Oligo‐Siloxane Crosslinks for Intrinsically Stretchable Semiconducting Polymers , 2016 .

[37]  Zhenan Bao,et al.  Capacitance Characterization of Elastomeric Dielectrics for Applications in Intrinsically Stretchable Thin Film Transistors , 2016 .

[38]  Bo-geng Li,et al.  High cis-1,4 Hydroxyl-Terminated Polybutadiene-Based Polyurethanes with Extremely Low Glass Transition Temperature and Excellent Mechanical Properties , 2016 .

[39]  H. Fuchs,et al.  Poly(sodium-4-styrene sulfonate) (PSSNa)-assisted transferable flexible, top-contact high-resolution free-standing organic field-effect transistors , 2015 .

[40]  Xuanhe Zhao,et al.  Tough Bonding of Hydrogels to Diverse Nonporous Surfaces , 2015, Nature materials.

[41]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[42]  Joon Hak Oh,et al.  Tuning Mechanical and Optoelectrical Properties of Poly(3-hexylthiophene) through Systematic Regioregularity Control , 2015 .

[43]  Kyung‐Eun Byun,et al.  Polythiophene Nanofibril Bundles Surface‐Embedded in Elastomer: A Route to a Highly Stretchable Active Channel Layer , 2015, Advanced materials.

[44]  David Beljonne,et al.  Approaching disorder-free transport in high-mobility conjugated polymers , 2014, Nature.

[45]  H. Sirringhaus 25th Anniversary Article: Organic Field-Effect Transistors: The Path Beyond Amorphous Silicon , 2014, Advanced materials.

[46]  Taek‐Soo Kim,et al.  Tensile testing of ultra-thin films on water surface , 2013, Nature Communications.

[47]  M. Kaltenbrunner,et al.  An ultra-lightweight design for imperceptible plastic electronics , 2013, Nature.

[48]  C. Stafford,et al.  Effect of Confinement on Stiffness and Fracture of Thin Amorphous Polymer Films. , 2012, ACS macro letters.

[49]  Mingdi Yan,et al.  Perfluorophenyl azides: new applications in surface functionalization and nanomaterial synthesis. , 2010, Accounts of chemical research.

[50]  Alberto Salleo,et al.  Indacenodithiophene semiconducting polymers for high-performance, air-stable transistors. , 2010, Journal of the American Chemical Society.

[51]  Yonggang Huang,et al.  Materials and Mechanics for Stretchable Electronics , 2010, Science.

[52]  R. Friend,et al.  High-performance polymer semiconducting heterostructure devices by nitrene-mediated photocrosslinking of alkyl side chains. , 2010, Nature materials.

[53]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[54]  Matthew S. Platz,et al.  Chemistry and Kinetics of Singlet (Pentafluorophenyl)nitrene. , 1992 .

[55]  M. J. Young,et al.  Chemistry and kinetics of singlet pentafluorophenylnitrene , 1992 .

[56]  M. J. Young,et al.  Mechanistic analysis of the reactions of (pentafluorophenyl)nitrene in alkanes , 1991 .

[57]  Z. Bao,et al.  Intrinsically stretchable conjugated polymer semiconductors in field effect transistors , 2020 .

[58]  G. Heinrich,et al.  Rubber elasticity of polymer networks: Theories , 1988 .