Sharp error bounds for the derivatives of Lidstone-spline interpolation II

Abstract In this paper, we shall derive explicit error estimates in L ∞ norm between a given function f ( x ) ∈ PC ( n ) [ a , b ], 4 ≤ n ≤ 6 and its quintic Lidstone-spline interpolate. The results obtained are then used to establish precise error bounds for the approximated and biquintic Lidstone-spline interpolates. We also include applications to integral equations and boundary value problems as well as sufficient numerical examples which dwell upon the sharpness of the obtained results.

[1]  Riaz A. Usmani,et al.  Quintic spline solutions of boundary value problems , 1980 .

[2]  Ravi P. Agarwal,et al.  Lidstone polynomials and boundary value problems , 1989 .

[3]  Hillel Poritsky On certain polynomial and other approximations to analytic functions , 1932 .

[4]  I. J. Schoenberg On certain two-point expansions of integral functions of exponential type , 1936 .

[5]  E. H. Twizell,et al.  Numerical methods for the solution of special and general sixth-order boundary-value problems, with applications to Bénard layer eigenvalue problems , 1990, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[6]  Georgios Akrivis,et al.  Boundary value problems occurring in plate deflection theory , 1982 .

[7]  Edward H. Twizell,et al.  Finite-difference methods for twelfth-order boundary-value problems , 1991 .

[8]  D V Widder,et al.  Functions Whose Even Derivatives Have a Prescribed Sign. , 1940, Proceedings of the National Academy of Sciences of the United States of America.

[9]  D. V. Widder,et al.  Completely convex functions and Lidstone series , 1942 .

[10]  Riaz A. Usmani,et al.  Smooth spline solutions for boundary value problems in plate deflection theory , 1980 .

[11]  P. Baldwin,et al.  Asymptotic estimates of the eigenvalues of a sixth-order boundary-value problem obtained by using global phase-integral methods , 1987, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[12]  M. M. Chawla A sixth order tridiagonal finite difference method for non-linear two-point boundary value problems , 1977 .

[13]  P. Baldwin,et al.  Localised instability in a bénard layer , 1987 .

[14]  B. Garay,et al.  Discretization of semilinear differential equations with an exponential dichotomy , 1994 .

[15]  E. Wagner International Series of Numerical Mathematics , 1963 .

[16]  Ravi P. Agarwal,et al.  Quasilinearization and approximate quasilinearization for lidstone boundary value problems , 1992, Int. J. Comput. Math..

[17]  M. Newman,et al.  Interpolation and approximation , 1965 .

[18]  Peter Forster,et al.  Existenzaussagen und Fehlerabschätzungen bei gewissen nichtlinearen Randwertaufgaben mit gewöhnlichen Differentialgleichungen , 1967 .

[19]  Ravi P. Agarwal,et al.  Error Inequalities in Polynomial Interpolation and their Applications , 1993 .

[20]  J. M. Whittaker On Lidstone's Series and Two-Point Expansions of Analytic Functions , 1934 .

[21]  Jr. R. P. Boas,et al.  Representation of functions by Lidstone series , 1943 .

[22]  Quintic spline solutions of fredholm integral equations of the second kind , 1990 .

[23]  J. M. Whittaker Interpolatory function theory , 1935 .

[24]  Riaz A. Usmani Applied Linear Algebra , 1986 .

[25]  Gary W. Howell,et al.  Best error bounds for derivatives in two point Birkhoff interpolation problems , 1983 .

[26]  Ravi P. Agarwal,et al.  Explicit error bounds for the derivatives of piecewise-Lidstone interpolation , 1995 .

[27]  G. J. Lidstone Notes on the Extension of Aitken's Theorem (for Polynomial Interpolation) to the Everett Types. , 1930 .

[28]  R. Agarwal Sharp inequalities in polynomial interpolation , 1992 .

[29]  Ravi P. Agarwal,et al.  Explicit error estimates for Quintic and biquintic spline interpolation II , 1994 .

[30]  R. P. Boas,et al.  A note on functions of exponential type , 1941 .