Analysis of block matrix preconditioners for elliptic optimal control problems

In this paper, we describe and analyse several block matrix iterative algorithms for solving a saddle point linear system arising from the discretization of a linear-quadratic elliptic control problem with Neumann boundary conditions. To ensure that the problem is well posed, a regularization term with a parameter α is included. The first algorithm reduces the saddle point system to a symmetric positive definite Schur complement system for the control variable and employs conjugate gradient (CG) acceleration, however, double iteration is required (except in special cases). A preconditioner yielding a rate of convergence independent of the mesh size h is described for Ω ⊂ R2 or R3, and a preconditioner independent of h and α when Ω ⊂ R2. Next, two algorithms avoiding double iteration are described using an augmented Lagrangian formulation. One of these algorithms solves the augmented saddle point system employing MINRES acceleration, while the other solves a symmetric positive definite reformulation of the augmented saddle point system employing CG acceleration. For both algorithms, a symmetric positive definite preconditioner is described yielding a rate of convergence independent of h. In addition to the above algorithms, two heuristic algorithms are described, one a projected CG algorithm, and the other an indefinite block matrix preconditioner employing GMRES acceleration. Rigorous convergence results, however, are not known for the heuristic algorithms. Copyright © 2007 John Wiley & Sons, Ltd.

[1]  D. Braess Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .

[2]  E. Haber,et al.  Preconditioned all-at-once methods for large, sparse parameter estimation problems , 2001 .

[3]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[4]  H. Elman Perturbation of Eigenvalues of Preconditioned Navier-Stokes Operators , 1997, SIAM J. Matrix Anal. Appl..

[5]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[6]  Xiao-Chuan Cai,et al.  Parallel Full Space SQP Lagrange-Newton-Krylov-Schwarz Algorithms for PDE-Constrained Optimization Problems , 2005, SIAM J. Sci. Comput..

[7]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[8]  P. Peisker,et al.  On the numerical solution of the first biharmonic equation , 1988 .

[9]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[10]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[11]  R. Glowinski,et al.  Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .

[12]  J. Pasciak,et al.  A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems , 1988 .

[13]  Abdon Sepulveda,et al.  Optimal placement of actuators and sensors in control‐augmented structural optimization , 1991 .

[14]  R. Lehoucq,et al.  A Primal-Based Penalty Preconditioner for Elliptic Saddle Point Systems , 2006, SIAM J. Numer. Anal..

[15]  G. Golub,et al.  Inexact and preconditioned Uzawa algorithms for saddle point problems , 1994 .

[16]  F. Thomasset Finite element methods for Navier-Stokes equations , 1980 .

[17]  Hoang Nguyen,et al.  Neumann-Neumann Domain Decomposition Preconditioners for Linear-Quadratic Elliptic Optimal Control Problems , 2006, SIAM J. Sci. Comput..

[18]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[19]  C. Farhat,et al.  A method of finite element tearing and interconnecting and its parallel solution algorithm , 1991 .

[20]  Matthias Heinkenschloss,et al.  Preconditioners for Karush-Kuhn-Tucker Matrices Arising in the Optimal Control of Distributed Systems , 1998 .

[21]  Matthias Heinkenschloss,et al.  Balancing Neumann-Neumann Methods for Elliptic Optimal Control Problems , 2005 .

[22]  George Biros,et al.  Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-Constrained Optimization. Part I: The Krylov-Schur Solver , 2005, SIAM J. Sci. Comput..

[23]  Ragnar Winther,et al.  A Preconditioned Iterative Method for Saddlepoint Problems , 1992, SIAM J. Matrix Anal. Appl..

[24]  Ekkehard W. Sachs,et al.  Block Preconditioners for KKT Systems in PDE—Governed Optimal Control Problems , 2001 .

[25]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[26]  O. Axelsson,et al.  Finite element solution of boundary value problemes - theory and computation , 2001, Classics in applied mathematics.

[27]  Axel Klawonn,et al.  An Optimal Preconditioner for a Class of Saddle Point Problems with a Penalty Term , 1995, SIAM J. Sci. Comput..

[28]  A Thesis Submitted,et al.  Domain Decomposition Methods for Linear-Quadratic Elliptic Optimal Control Problems , 2004 .

[29]  Gene H. Golub,et al.  A Note on Preconditioning for Indefinite Linear Systems , 1999, SIAM J. Sci. Comput..

[30]  Jacques-Louis Lions,et al.  Some Methods in the Mathematical Analysis of Systems and Their Control , 1981 .

[31]  George Biros,et al.  Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-Constrained Optimization. Part II: The Lagrange-Newton Solver and Its Application to Optimal Control of Steady Viscous Flows , 2005, SIAM J. Sci. Comput..

[32]  Axel Klawonn,et al.  Block-Triangular Preconditioners for Saddle Point Problems with a Penalty Term , 1998, SIAM J. Sci. Comput..

[33]  Walter Zulehner,et al.  Analysis of iterative methods for saddle point problems: a unified approach , 2002, Math. Comput..