Analysis of block matrix preconditioners for elliptic optimal control problems
暂无分享,去创建一个
[1] D. Braess. Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .
[2] E. Haber,et al. Preconditioned all-at-once methods for large, sparse parameter estimation problems , 2001 .
[3] J. Lions,et al. Non-homogeneous boundary value problems and applications , 1972 .
[4] H. Elman. Perturbation of Eigenvalues of Preconditioned Navier-Stokes Operators , 1997, SIAM J. Matrix Anal. Appl..
[5] Andrea Toselli,et al. Domain decomposition methods : algorithms and theory , 2005 .
[6] Xiao-Chuan Cai,et al. Parallel Full Space SQP Lagrange-Newton-Krylov-Schwarz Algorithms for PDE-Constrained Optimization Problems , 2005, SIAM J. Sci. Comput..
[7] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[8] P. Peisker,et al. On the numerical solution of the first biharmonic equation , 1988 .
[9] Gene H. Golub,et al. Numerical solution of saddle point problems , 2005, Acta Numerica.
[10] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[11] R. Glowinski,et al. Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .
[12] J. Pasciak,et al. A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems , 1988 .
[13] Abdon Sepulveda,et al. Optimal placement of actuators and sensors in control‐augmented structural optimization , 1991 .
[14] R. Lehoucq,et al. A Primal-Based Penalty Preconditioner for Elliptic Saddle Point Systems , 2006, SIAM J. Numer. Anal..
[15] G. Golub,et al. Inexact and preconditioned Uzawa algorithms for saddle point problems , 1994 .
[16] F. Thomasset. Finite element methods for Navier-Stokes equations , 1980 .
[17] Hoang Nguyen,et al. Neumann-Neumann Domain Decomposition Preconditioners for Linear-Quadratic Elliptic Optimal Control Problems , 2006, SIAM J. Sci. Comput..
[18] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[19] C. Farhat,et al. A method of finite element tearing and interconnecting and its parallel solution algorithm , 1991 .
[20] Matthias Heinkenschloss,et al. Preconditioners for Karush-Kuhn-Tucker Matrices Arising in the Optimal Control of Distributed Systems , 1998 .
[21] Matthias Heinkenschloss,et al. Balancing Neumann-Neumann Methods for Elliptic Optimal Control Problems , 2005 .
[22] George Biros,et al. Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-Constrained Optimization. Part I: The Krylov-Schur Solver , 2005, SIAM J. Sci. Comput..
[23] Ragnar Winther,et al. A Preconditioned Iterative Method for Saddlepoint Problems , 1992, SIAM J. Matrix Anal. Appl..
[24] Ekkehard W. Sachs,et al. Block Preconditioners for KKT Systems in PDE—Governed Optimal Control Problems , 2001 .
[25] Jean E. Roberts,et al. Mixed and hybrid finite element methods , 1987 .
[26] O. Axelsson,et al. Finite element solution of boundary value problemes - theory and computation , 2001, Classics in applied mathematics.
[27] Axel Klawonn,et al. An Optimal Preconditioner for a Class of Saddle Point Problems with a Penalty Term , 1995, SIAM J. Sci. Comput..
[28] A Thesis Submitted,et al. Domain Decomposition Methods for Linear-Quadratic Elliptic Optimal Control Problems , 2004 .
[29] Gene H. Golub,et al. A Note on Preconditioning for Indefinite Linear Systems , 1999, SIAM J. Sci. Comput..
[30] Jacques-Louis Lions,et al. Some Methods in the Mathematical Analysis of Systems and Their Control , 1981 .
[31] George Biros,et al. Parallel Lagrange-Newton-Krylov-Schur Methods for PDE-Constrained Optimization. Part II: The Lagrange-Newton Solver and Its Application to Optimal Control of Steady Viscous Flows , 2005, SIAM J. Sci. Comput..
[32] Axel Klawonn,et al. Block-Triangular Preconditioners for Saddle Point Problems with a Penalty Term , 1998, SIAM J. Sci. Comput..
[33] Walter Zulehner,et al. Analysis of iterative methods for saddle point problems: a unified approach , 2002, Math. Comput..