Polarity Reversals from Paleomagnetic Observations and Numerical Dynamo Simulations

Recent advances in the study of geomagnetic field reversals are reviewed. These include studies of the transitional field during the last geomagnetic reversal and the last geomagnetic excursion based on paleomagnetic observations, and analysis of reversals in self-consistent 3D numerical dynamo simulations. Field models inferred from observations estimate reversal duration in the range of 1–10 kyr (depending on site location). The transitional fields during both the Matuyama/Brunhes reversal and the Laschamp excursion are characterized by low-latitude reversed flux formation and subsequent poleward migration. During both events the dipole as well as the non-dipole field energies decrease. However, while the non-dipole energy dominates the dipole energy for a period of 2 kyr in the reversal, the non-dipole energy merely exceeds the dipole energy for a very brief period during the excursion. Numerical dynamo simulations show that stronger convection, slower rotation, and lower electrical conductivity provide more favorable conditions for reversals. A non-dimensional number that depends on the typical length scale of the flow and represents the relative importance of inertial effects, termed the local Rossby number, seems to determine whether a dynamo will reverse or not. Stable polarity periods in numerical dynamos may last about 1 Myr, whereas reversals may last about 10 kyr. Numerical dynamo reversals often involve prolonged dipole collapse followed by shorter directional instability of the dipole axis, with advective processes governing the field variation. Magnetic upwellings from the equatorial inner-core boundary that produce reversed flux patches at low-latitudes of the core-mantle boundary could be significant in triggering reversals. Inferences from the observational and modeling sides are compared. We summarize with an outlook on some open questions and future prospects.

[1]  A. Roberts,et al.  Why are geomagnetic excursions not always recorded in sediments? Constraints from post-depositional remanent magnetization lock-in modelling , 2004 .

[2]  Beer,et al.  Geomagnetic modulation of the 36Cl flux in the GRIP ice core, greenland , 1998, Science.

[3]  Simulation study of the symmetry-breaking instability and the dipole field reversal in a rotating spherical shell dynamo , 2007 .

[4]  Gary A. Glatzmaier,et al.  Numerical Simulations of Stellar Convective Dynamos. I. The Model and Method , 1984 .

[5]  R. Leonhardt,et al.  Morphology of the Iceland Basin Excursion from a spherical harmonics analysis and an iterative Bayesian inversion procedure of sedimentary records , 2008 .

[6]  Johannes Wicht Palaeomagnetic interpretation of dynamo simulations , 2005 .

[7]  Paul H. Roberts,et al.  On Analysis of the Secular Variation , 1965 .

[8]  Jeremy Bloxham,et al.  Fluid flow near the surface of Earth's outer core , 1991 .

[9]  U. Christensen,et al.  8.08 – Numerical Dynamo Simulations , 2007 .

[10]  Gauthier Hulot,et al.  Detecting thermal boundary control in surface flows from numerical dynamos , 2007 .

[11]  Willi Freeden,et al.  Handbook of geomathematics , 2010 .

[12]  K. Hoffman Dipolar reversal states of the geomagnetic field and core–mantle dynamics , 1992, Nature.

[13]  M. Fuller,et al.  Paleomagnetic records of polarity transitions, excursions, and secular variation , 1975 .

[14]  Gauthier Hulot,et al.  Thermochemical flows couple the Earth's inner core growth to mantle heterogeneity , 2008, Nature.

[15]  Gerold Wefer,et al.  Use of proxies in paleoceanography : examples from the South Atlantic , 1999 .

[16]  P. Olson,et al.  Polarity reversals in geodynamo models with core evolution , 2009 .

[17]  G. Glatzmaier,et al.  Simulating the geodynamo , 1997 .

[18]  Ulrich R. Christensen,et al.  Numerical Dynamo Simulations , 2007 .

[19]  G. Schubert,et al.  Treatise on geophysics , 2007 .

[20]  U. Christensen,et al.  effects of driving mechanisms in geodynamo models , 2000 .

[21]  Dominique Jault,et al.  Axial invariance of rapidly varying diffusionless motions in the Earth’s core interior , 2008, 0809.3440.

[22]  P. Olson,et al.  A dynamo cascade interpretation of the geomagnetic dipole decrease , 2009 .

[23]  Matthew R. Walker,et al.  Four centuries of geomagnetic secular variation from historical records , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[24]  E. Herrero-Bervera,et al.  Geomagnetic excursions reflect an aborted polarity state , 2008 .

[25]  Johannes Wicht,et al.  Numerical Models of the Geodynamo: From Fundamental Cartesian Models to 3D Simulations of Field Reversals , 2009 .

[26]  Ronald T. Merrill,et al.  Geomagnetic polarity transitions , 1999 .

[27]  T. Johnson,et al.  Deep‐sea sediment records of the Laschamp geomagnetic field excursion (∼41,000 calendar years before present) , 2005 .

[28]  K. Hoffman Palaeomagnetic excursions, aborted reversals and transitional fields , 1981, Nature.

[29]  D. Gubbins,et al.  Geomagnetic field analysis-IV. Testing the frozen-flux hypothesis , 1986 .

[30]  A. Roberts,et al.  Geomagnetic field behavior during the Iceland Basin and Laschamp geomagnetic excursions: A simple transitional field geometry? , 2006 .

[31]  H. K. Moffatt Magnetic Field Generation in Electrically Conducting Fluids , 1978 .

[32]  P. Olson Gravitational dynamos and the low-frequency geomagnetic secular variation , 2007, Proceedings of the National Academy of Sciences.

[33]  E. Parker Hydromagnetic Dynamo Models , 1955 .

[34]  D. Kent,et al.  A Southern Hemisphere record of the Matuyama‐Brunhes polarity reversal , 1991 .

[35]  Karl Fabian,et al.  Paleomagnetic reconstruction of the global geomagnetic field evolution during the Matuyama/Brunhes transition: Iterative Bayesian inversion and independent verification , 2007 .

[36]  Gauthier Hulot,et al.  A simple model for mantle-driven flow at the top of Earth’s core , 2008 .

[37]  L. Tauxe,et al.  Equatorial and mid-latitude records of the last geomagnetic reversal from the Atlantic Ocean , 1989 .

[38]  Mioara Mandea,et al.  Rapidly changing flows in the Earth's core , 2008 .

[39]  F. Heller Self-reversal of natural remanent magnetisation in the Olby-Laschamp lavas , 1980, Nature.

[40]  H. Worm A link between geomagnetic reversals and events and glaciations , 1997 .

[41]  R. Merrill The magnetic field of the earth , 1996 .

[42]  Michael W. McElhinny,et al.  The Magnetic Field of the Earth: Paleomagnetism, the Core, and the Deep Mantle , 1997 .

[43]  Bradford M. Clement,et al.  Geographical distribution of transitional VGPs: Evidence for non-zonal equatorial symmetry during the Matuyama-Brunhes geomagnetic reversal , 1991 .

[44]  A. Schult Self-reversal of magnetization and chemical composition of titanomagnetites in basalts , 1968 .

[45]  Michael Winklhofer,et al.  Geomagnetic field evolution during the Laschamp excursion , 2009 .

[46]  R. Holme,et al.  Exploring the influence of the non-dipole field on magnetic records for field reversals and excursions , 2007 .

[47]  Ashley P. Willis,et al.  Thermal core–mantle interaction: Exploring regimes for ‘locked’ dynamo action , 2007 .

[48]  T. Tanimoto,et al.  Spherical harmonic analyses of paleomagnetic data: The time‐averaged geomagnetic field for the past 5 Myr and the Brunhes‐Matuyama reversal , 1999 .

[49]  L. Meynadier,et al.  Geomagnetic dipole strength and reversal rate over the past two million years , 2005, Nature.

[50]  David Gubbins,et al.  Fall in Earth's Magnetic Field Is Erratic , 2006, Science.

[51]  Jean-Pierre Valet,et al.  Global changes in intensity of the Earth's magnetic field during the past 800 kyr , 1999, Nature.

[52]  J. Love Statistical assessment of preferred transitional VGP longitudes based on palaeomagnetic lava data , 2000 .

[53]  Johannes Wicht,et al.  A detailed study of the polarity reversal mechanism in a numerical dynamo model , 2004 .

[54]  C. Laj,et al.  Geomagnetic reversal paths , 1991, Nature.

[55]  Jeremy Bloxham,et al.  The expulsion of magnetic flux from the Earth's core , 1986 .

[56]  A. Jonkers Long-range dependence in the Cenozoic reversal record , 2003 .

[57]  T. Dobeneck,et al.  Geomagnetic Events and Relative Paleointensity Records - Clues to High-Resolution Paleomagnetic Chronostratigraphies of Late Quaternary Marine Sediments? , 1999 .

[58]  K. Glassmeier,et al.  Energetic particles in the paleomagnetosphere: Reduced dipole configurations and quadrupolar contributions , 2007 .

[59]  G. Glatzmaier,et al.  Geodynamo reversal frequency and heterogeneous core–mantle boundary heat flow , 2010 .

[60]  P. Rochette,et al.  Longitudinal confinement of geomagnetic reversal paths as a possible sedimentary artefact , 1992, Nature.

[61]  J. Aurnou,et al.  Experiments on convection in Earth’s core tangent cylinder , 2003 .

[62]  C. Langereis Earth science: Excursions in geomagnetism , 1999, Nature.

[63]  E. Herrero-Bervera,et al.  Some characteristics of geomagnetic reversals inferred from detailed volcanic records , 2003 .

[64]  G. Sarson,et al.  Are geomagnetic field reversals controlled by turbulence within the Earth's core? , 2007 .

[65]  L. Alldredge Harmonics Required in Main Field and Secular Variation Models , 1984 .

[66]  Cor G. Langereis,et al.  Magnetostratigraphy and astronomical calibration of the last 1.1 Myr from an eastern Mediterranean piston core and dating of short events in the Brunhes , 1997 .

[67]  B. Singer,et al.  Laschamp and Mono Lake geomagnetic excursions recorded in New Zealand , 2007 .

[68]  C. Laj,et al.  5.10 – Geomagnetic Excursions , 2007 .

[69]  Paul H. Roberts,et al.  A three-dimensional self-consistent computer simulation of a geomagnetic field reversal , 1995, Nature.

[70]  C. Jones,et al.  Azimuthal winds, convection and dynamo action in the polar regions of planetary cores , 2006 .

[71]  E. Dormy,et al.  Numerical models of the geodynamo and observational constraints , 2000 .

[72]  Yoshimori Honkura,et al.  Scale variability in convection-driven MHD dynamos at low Ekman number , 2008 .

[73]  M. Hyodo Possibility of Reconstruction of the Past Geomagnetic Field from Homogeneous Sediments , 1984 .

[74]  Carsten Kutzner,et al.  From stable dipolar towards reversing numerical dynamos , 2002 .

[75]  Peter Driscoll,et al.  Dipole collapse and reversal precursors in a numerical dynamo , 2009 .

[76]  Ulrich R. Christensen,et al.  The time-averaged magnetic field in numerical dynamos with non-uniform boundary heat flow , 2002 .

[77]  Carsten Kutzner,et al.  Simulated geomagnetic reversals and preferred virtual geomagnetic pole paths , 2004 .

[78]  D. Gubbins,et al.  Correlation of Earth’s magnetic field with lower mantle thermal and seismic structure , 2007 .

[79]  B. Clement Dependence of the duration of geomagnetic polarity reversals on site latitude , 2004, Nature.

[80]  C. Jones,et al.  A convection driven geodynamo reversal model , 1999 .

[81]  Catherine Constable,et al.  Continuous geomagnetic field models for the past 7 millennia: 2. CALS7K , 2005 .

[82]  Ulrich R. Christensen,et al.  Numerical modelling of the geodynamo: a systematic parameter study , 1999 .

[83]  G. Turner,et al.  Behaviour of the geomagnetic field during the Matuyama–Brunhes polarity transition , 2008 .

[84]  Gabi Laske,et al.  The Relative Behavior of Shear Velocity, Bulk Sound Speed, and Compressional Velocity in the Mantle: Implications for Chemical and Thermal Structure , 2013 .

[85]  Jon Rotvig,et al.  An investigation of reversing numerical dynamos driven by either differential or volumetric heating , 2009 .

[86]  Jonathan M. Aurnou,et al.  The magnetic structure of convection-driven numerical dynamos , 2008 .

[87]  H. Harder,et al.  Numerical Dynamo Simulations: From Basic Concepts to Realistic Models , 2010 .

[88]  B. Dubrulle,et al.  Magnetic field reversals in an experimental turbulent dynamo , 2007, physics/0701076.

[89]  L. Kristjánsson,et al.  Late Pleistocene geomagnetic excursion in Icelandic lavas : Confirmation of the Laschamp excursion , 1990 .

[90]  L. Meynadier,et al.  Palaeomagnetic constraints on the geometry of the geomagnetic field during reversals , 1992, Nature.

[91]  Pierre Camps,et al.  Absence of preferred longitude sectors for poles from volcanic records of geomagnetic reversals , 1993, Nature.

[92]  R. Leonhardt,et al.  A reversal of the Earth's magnetic field recorded in mid‐Miocene lava flows of Gran Canaria: Paleointensities , 2002 .

[93]  Yoshimori Honkura,et al.  A numerical study on magnetic polarity transition in an MHD dynamo model , 2007 .

[94]  U. Christensen,et al.  Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields , 2006 .

[95]  J. Beer,et al.  Geomagnetic intensity and inclination variations at Hawaii for the past 98 kyr from core SOH-4 (Big Island): a new study and a comparison with existing contemporary data , 2002 .

[96]  C. Laj,et al.  Geomagnetic paleointensities at Hawaii between 3.9 and 2.1 Ma: preliminary results , 2000 .

[97]  U. Christensen,et al.  Numerical modeling of the geodynamo: Mechanisms of field generation and equilibration , 1999 .

[98]  Gary A. Glatzmaier,et al.  Geodynamo Simulations—How Realistic Are They? , 2002 .

[99]  V. Hsu,et al.  The zonal harmonic model of polarity transitions: A test using successive reversals , 1985 .

[100]  S. Cande,et al.  Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic , 1995 .

[101]  Nils Olsen,et al.  Observation of magnetic diffusion in the Earth's outer core from Magsat, Ørsted, and CHAMP data , 2010 .

[102]  M. Knudsen,et al.  Paleomagnetic results from a reconnaissance study of Santiago (Cape Verde Islands): Identification of cryptochron C2r.2r-1 , 2009 .

[103]  B. Brunhes Recherches sur la direction d'aimantation des roches volcaniques , 2022 .

[104]  G. Glatzmaier,et al.  A three-dimensional convective dynamo solution with rotating and finitely conducting inner core and mantle , 1995 .

[105]  G. Glatzmaier,et al.  An examination of simulated geomagnetic reversals from a palaeomagnetic perspective , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[106]  K. Hoffman Transitional paleomagnetic field behavior: Preferred paths or patches? , 1996 .

[107]  Paul H. Roberts,et al.  The role of the Earth's mantle in controlling the frequency of geomagnetic reversals , 1999, Nature.

[108]  Ulrich R. Christensen,et al.  Secular variation in numerical geodynamo models with lateral variations of boundary heat flow , 2003 .

[109]  David Gubbins,et al.  Mechanism for geomagnetic polarity reversals , 1987, Nature.

[110]  A. Mazaud ‘Sawtooth’ variation in magnetic intensity profiles and delayed acquisition of magnetization in deep sea cores , 1996 .

[111]  M. Raymo,et al.  A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records , 2005 .

[112]  Gauthier Hulot,et al.  Earth's dynamo limit of predictability , 2010 .

[113]  N. Petersen,et al.  Self‐reversal of remanent magnetization in basalts due to partially oxidized titanomagnetites , 2005 .

[114]  D. Hodell,et al.  A 580 kyr paleomagnetic record from the sub-Antarctic South Atlantic (Ocean Drilling Program Site 1089) , 2003 .

[115]  J. Love,et al.  A database for the Matuyama-Brunhes magnetic reversal , 1997 .

[116]  J. Shebalin,et al.  Theory and Modeling of Planetary Dynamos , 2012 .

[117]  B. Jicha,et al.  Structural and temporal requirements for geomagnetic field reversal deduced from lava flows , 2005, Nature.

[118]  P. Olson,et al.  Changes in earth’s dipole , 2006, Naturwissenschaften.

[119]  Peter J. Smith Field Reversal or Self-Reversal ? , 1971, Nature.

[120]  Jeffrey J. Love,et al.  Paleomagnetic volcanic data and geometric regularity of reversals and excursions , 1998 .

[121]  C. Laj,et al.  Rapid climatic variations during marine isotopic stage 3: magnetic analysis of sediments from Nordic Seas and North Atlantic , 1999 .

[122]  C. Laj,et al.  On the age of the Laschamp geomagnetic excursion , 2004 .

[123]  F. Busse,et al.  Prandtl-number dependence of convection-driven dynamos in rotating spherical fluid shells , 2005, Journal of Fluid Mechanics.

[124]  M. Matsushima,et al.  Simulations of a Quasi–Taylor State Geomagnetic Field Including Polarity Reversals on the Earth Simulator , 2005, Science.

[125]  M. Fuller,et al.  Zonal harmonic models of reversal transition fields , 1981 .

[126]  A. Roberts Click Here for Full Article , 1989 .

[127]  J. Channell Late Brunhes polarity excursions (Mono Lake, Laschamp, Iceland Basin and Pringle Falls) recorded at ODP Site 919 (Irminger Basin) , 2006 .

[128]  Akira Kageyama,et al.  Repeated and Sudden Reversals of the Dipole Field Generated by a Spherical Dynamo Action , 2002, Science.

[129]  P. Olson,et al.  Geomagnetic dipole tilt changes induced by core flow , 2008 .

[130]  F. H. Busse,et al.  Toroidal flux oscillation as possible cause of geomagnetic excursions and reversals , 2008, 0904.1031.

[131]  C. Laj,et al.  A geomagnetic chronology for antarctic ice accumulation , 1994 .

[132]  Gary A. Glatzmaier,et al.  Symmetry and stability of the geomagnetic field , 2006 .

[133]  Johannes Wicht Inner-core conductivity in numerical dynamo simulations , 2002 .

[134]  D. Gubbins The distinction between geomagnetic excursions and reversals , 1999 .

[135]  C. Blanchet,et al.  Evidence for multiple paleomagnetic intensity lows between 30 and 50 ka BP from a western Equatorial Pacific sedimentary sequence , 2006 .

[136]  M. Prévôt,et al.  The Steens Mountain (Oregon) geomagnetic polarity transition: 2. Field intensity variations and discussion of reversal models , 1985 .

[137]  P. Davidson An Introduction to Magnetohydrodynamics , 2001 .

[138]  F. D. Stacey Physics of the earth , 1977 .

[139]  U. Christensen,et al.  The effect of thermal boundary conditions on dynamos driven by internal heating , 2010 .

[140]  J. Aubert,et al.  Modelling the palaeo-evolution of the geodynamo , 2009 .

[141]  U. Christensen,et al.  Dipole moment scaling for convection-driven planetary dynamos , 2005 .

[142]  A. Mazaud An attempt at reconstructing the geomagnetic field at the core-mantle boundary during the Upper Olduvai polarity transition (1.66 Myear) , 1995 .

[143]  A. Cox The frequency of geomagnetic reversals and the symmetry of the nondipole field , 1975 .