Unique continuation and an inverse problem for hyperbolic equations across a general hypersurface

We consider a hyperbolic equation p(x, t) ?t2u(x, t) = ?u(x, t) + ?k=1n qk(x, t) ?ku + qn + 1(x, t) ?tu + r(x, t)u in n ? with p C1 and q1, ... , qn+1, r L?. Let ? be a part of the boundary of a domain and let ?(x) be the inward unit normal vector to ? at x. Then we prove the conditional stability in the unique continuation near a point x0 across ? if ?p(x0, t) ? ?(x0) < 0 and the radius of the osculating ball at x0 is large for ??p(x0, t) ? ?(x0). Next we prove the conditional stability in the inverse problem of determining a coefficient r(x) from Cauchy data on ? over a time interval. The key is a Carleman estimate in level sets of paraboloid shapes.

[1]  L. Hörmander On the uniqueness of the Cauchy problem under partial analyticity assumptions , 1997 .

[2]  Mourad Bellassoued,et al.  Global logarithmic stability in inverse hyperbolic problem by arbitrary boundary observation , 2004 .

[3]  Michael V. Klibanov,et al.  Inverse Problems and Carleman Estimates , 1992 .

[4]  Par S. Alinhac Non-unicite du probleme de Cauchy , 1983 .

[5]  Masahiro Yamamoto,et al.  GLOBAL UNIQUENESS AND STABILITY IN DETERMINING COEFFICIENTS OF WAVE EQUATIONS , 2001 .

[6]  M. M. Lavrentʹev,et al.  Ill-Posed Problems of Mathematical Physics and Analysis , 1986 .

[7]  Lucie Baudouin,et al.  Uniqueness and stability in an inverse problem for the Schrödinger equation , 2007 .

[8]  Masahiro Yamamoto,et al.  Logarithmic stability in determination of a coefficient in an acoustic equation by arbitrary boundary observation , 2006 .

[9]  Masahiro Yamamoto Uniqueness and stability in multidimensional hyperbolic inverse problems , 1999 .

[10]  Masahiro Yamamoto,et al.  Global Lipschitz stability in an inverse hyperbolic problem by interior observations , 2001 .

[11]  Takashi Taniguchi On the zeta functions of prehomogeneous vector spaces for a pair of simple algebras , 2004, math/0403253.

[12]  L. Hörmander Linear Partial Differential Operators , 1963 .

[13]  Tataru Daniel,et al.  Unique continuation for solutions to pde's; between hörmander's theorem and holmgren' theorem , 1995 .

[14]  Masahiro Yamamoto,et al.  Determination of a coefficient in an acoustic equation with a single measurement , 2003 .

[15]  Mourad,et al.  Stable identification of a semilinear term in a parabolic equation , 2004 .

[16]  A Khaĭdarov,et al.  CARLEMAN ESTIMATES AND INVERSE PROBLEMS FOR SECOND ORDER HYPERBOLIC EQUATIONS , 1987 .

[17]  A. Kh. Amirov,et al.  Integral Geometry and Inverse Problems for Kinetic Equations , 2001 .

[18]  Hitoshi Tanaka,et al.  Morrey Spaces for Non–doubling Measures , 2005 .

[19]  Victor Isakov,et al.  Carleman Type Estimates in an Anisotropic Case and Applications , 1993 .

[20]  Yukio Matsumoto Splitting of certain singular fibers of genus two , 2004 .

[21]  原下 秀士 Ekedahl-Oort Strata Contained in the Supersingular Locus (代数的整数論とその周辺 研究集会報告集) , 2005 .

[22]  Michael V. Klibanov,et al.  Lipschitz stability of an inverse problem for an acoustic equation , 2006 .

[23]  Masahiro Yamamoto,et al.  Carleman estimates for the non-stationary Lamé system and the application to an inverse problem , 2005 .

[24]  V. Isakov,et al.  Uniqueness and stability in the Cauchy problem for Maxwell and elasticity systems , 2002 .

[25]  S. B. Childs,et al.  INVERSE PROBLEMS IN PARTIAL DIFFERENTIAL EQUATIONS. , 1968 .

[26]  Y. Y. Belov,et al.  Inverse Problems for Partial Differential Equations , 2002 .

[27]  Michael V. Klibanov,et al.  Carleman estimates for coefficient inverse problems and numerical applications , 2004 .

[28]  A. Bukhgeǐm,et al.  Introduction to the Theory of Inverse Problems , 2000 .

[29]  Hitoshi Kumano-Go,et al.  On an example of non-uniqueness of solutions of the Cauchy problem for the wave equation , 1963 .

[30]  Victor Isakov,et al.  An inverse problem for the dynamical Lamé system with two sets of boundary data , 2003 .

[31]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[32]  MATRIX COEFFICIENTS OF REPRESENTATIONS OF SU(2,2): THE CASE OF PJ-PRINCIPAL SERIES , 2004 .

[33]  Hiroshi Kawabi Functional inequalities and an application for parabolic stochastic partial differential equations containing rotation , 2004 .

[34]  N. Lerner Uniqueness for an ill-posed problem , 1988 .

[35]  Takao Satoh,et al.  Twisted first homology groups of the automorphism group of a free group , 2006 .

[36]  K.,et al.  The second main theorem for holomorphic curves into semi-abelian varieties II , 2004 .

[37]  L. Robbiano,et al.  Théorème d'unicité adapté au contrôle des solutions des problèmes hyperboliques , 1991 .